Process | EEX: Excitation |
Data type | cross section | uploaded on 2023-02-08 |
Comment | Fit function and data were taken from Johnson et al. Equation (29). Errors: E<30*threshold -> 100%, 30*threshold<E<80*threshold -> 60%, E>80*threshold -> 20%. |
Method | semi-empirical |
Columns |
|
Threshold | 1.234 eV |
Ref |
|
Data | Download (data from fit) |
Fit Function Details |
\[\begin{align*} \sigma_{ex}^{n>2 \rightarrow m>n}(E) &= \frac{1.76 \times 10^{-16}A_1^2I}{A_3E} \Bigg[ 1 - e^{-A_3A_4 \frac{E}{I}} \Bigg] \\ & \Bigg[A_5 \bigg(\ln\bigg(\frac{E}{I}\bigg) + \frac{I}{2E}\bigg) + \bigg(A_6 - A_5\ln\frac{2A_1^2}{A_3}\bigg)\bigg(1 - \frac{I}{E} \bigg) \Bigg] \end{align*}\] | ||||||||||||
Python | def h_eex_johnson(E, A1, A2, A3, A4, A5, A6, I): """ This function calculates electron impact excitation cross sections (in cm2) of H n > 2 to m > n , with exception of n=2 to n=3. param E: requested electron-impact energy in eV type E: float, np.ndarray param Ai: fit coefficient type Ai: float param I: threshold energy in eV type I: float """ sigma = 1.76e-16*A1**2/(A3*E/I)*(1-np.exp(-1*A3*A4*E/I)) * (A5*(np.log(E/I)+1/(2*E/I)) + (A6-A5 * np.log(2*A1**2/A3))*(1-1/(E/I))) return sigma |
||||||||||||
Fit Precision | 0.6 % | ||||||||||||
Fit Coefficients |
|
||||||||||||
x-range | 1.2335600907029478 – |