DataSet D108066

\[\mathrm{e}^- + \mathrm{H} \; 1s \rightarrow \mathrm{H} \; n=8 + \mathrm{e}^-\]


Process EEX: Excitation
Data type cross section | uploaded on 2023-02-08
Comment Fit function and data were taken from Johnson et al. Equation (29). Errors: E<40eV -> 80%, 40eV<E<100eV -> 40%, E>100eV -> 20%.

Methodsemi-empirical
Columns
  1. E /eV
  2. sigma /cm2
Threshold13.387 eV
Ref
  • B26: L.C. Johnson, "Approximations for collisional and radiative transition rates in atomic hydrogen", Astrophysical Journal 174, 227-236 (1972). [10.1086/151486]
DataDownload (data from fit)

Fitted Data

Fit Function
Details
\[\begin{align*} \sigma_{ex}^{n>2 \rightarrow m>n}(E) &= \frac{1.76 \times 10^{-16}A_1^2I}{A_2E} \Bigg[ 1 - e^{-A_3A_2 \frac{E}{I}} \Bigg] \\ & \Bigg[A_4 \bigg(\ln\bigg(\frac{E}{I}\bigg) + \frac{I}{2E}\bigg) + \bigg(A_5 - A_4\ln\frac{2A_1^2}{A_2}\bigg)\bigg(1 - \frac{I}{E} \bigg) \Bigg] \end{align*}\]
Python
def h_eex_johnson(E, A1, A2, A3, A4, A5, I):
    """
    This function calculates electron impact excitation cross sections (in cm2) of 
    H n > 2 to m > n , with exception of n=2 to n=3.
    param E: requested electron-impact energy in eV
    type E: float, np.ndarray
    param Ai: fit coefficient 
    type Ai: float
    param I: threshold energy in eV
    type I: float
    """
    sigma = 1.76e-16*A1**2/(A3*E/I)*(1-np.exp(-1*A3*A4*E/I)) * (A5*(np.log(E/I)+1/(2*E/I)) + 
                    (A6-A5 * np.log(2*A1**2/A3))*(1-1/(E/I)))
    return sigma
Fit Precision0.6 %
Fit Coefficients
A1
 1.000e+00
A2
 8.000e+00
A3
 9.844e-01
A4
 4.500e-01
A5
 6.478e-03
A6
 1.397e-02
I
 1.339e+01
x-range 13.62892523552912 –