

Electron–Ion Collision Experiments in Storage Rings: Cross Section Data and Fundamental Understanding

Andreas Wolf

Max-Planck-Institut für Kernphysik, Heidelberg, Germany

Experimentalists' Network on Atomic and Molecular Data IAEA Vienna Nov 19 – 21, 2018

Merged electron-ion beam experiments

Experimental facilities

Plasma rate constants from high-resolution recombination measurements: Atoms Molecules State-selected cold molecules

Merged-beams electron ion collisions

Merged-beams electron ion collisions

Merged-beams electron ion collisions

- Counting
- Momentum measurement (time + position)
- Coincidence measurements

Resonant ("dielectronic") recombination

Doubly excited state

Feshbach resonance in the electronic continuum

lon core excitations

Photoemission from doubly excited state

Storage ring merged beams experiments

Storage ring merged beams experiments

- Store and phase-space cool molecular ion beam
- Reduce/control internal excitation of molecular ions (T_{env} = 300 K)
- Cold electrons ($T_{e} \sim 10$ K) vary collision energy of electrons
- Neutral fragment detection: rates

product momenta product masses

Iron ion dielectronic recombination

 $Fe^{q+} + e \rightarrow (Fe^{(q-1)+})^{**} \rightarrow (Fe^{(q-1)+})^{*} + hv$

X-ray view of Galaxy M 106 with supermassive black hole

NASA/CXC/Univ. Maryland/A.S. Wilson et al./ Palomar Observatory DSS/JPL-Caltech/NRAO/AUI/NSF

NASA-funded storage ring studies at TSR D. W. Savin, Columbia Astrophysics Laboratory, NY S. Schippers, A. Müller et al., Univ. Gießen, Germany

Theory: T. Gorczyca et al., N. Badnell et al.

X-ray ionized plasma

by photoionization

Low electron

temperature

High ion charge states

 \rightarrow Charge states dependent on

 $\Delta N = 0$ dielectronic recombination

Theory: T. Gorczyca et al., N. Badnell et al.

Iron ion dielectronic recombination $Fe^{13+} + e \rightarrow (Fe^{12+})^{**} \rightarrow (Fe^{12+})^{*} + hv$

 $3s^2 3p \ ^2P \rightarrow \ 3s^2 \ 3d \ ^2D_{_{3/2}} nl''' series$

40

50

Iron ion dielectronic recombination

Iron ion dielectronic recombination

Ø

Experimental rate constant data

$$\mathbf{Fe^{13+} + e} \to (\mathbf{Fe^{12+}})^{**} \to (\mathbf{Fe^{12+}})^{*} + hv$$

$$\alpha_{\text{plasma}}(T_e) = T_e^{-3/2} \sum_{i=1}^{10} c_i \exp(-E_i/k_B T_e)$$
(1)

E. W. Schmidt et al., Astrophys. J. Lett. 641, L157 (2006)

Recombination rate coeff. (cm 3 s⁻¹) photocollisionally ionized ionized 10-6 plasma plasma 10-KFG 10⁻¹⁰ WSS 0.1 10 100 1 Electron temperature (eV)

Errors:

~15% ion current and electron density systematics ~8% estimate of non-DR recombination (=RR)

~18% overall

PARAMETERS FOR THE FIT OF EQUATION (1)

i	$(\text{cm}^3 \text{ s}^{-1} \text{ K}^{-1})$	E_i (eV)
1	3.55×10^{-4}	2.19×10^{-2}
2	2.40×10^{-3}	1.79×10^{-1}
3	7.83×10^{-3}	7.53×10^{-1}
4	1.10×10^{-2}	$2.21 \times 10^{\circ}$
5	3.30×10^{-2}	$9.57 \times 10^{\circ}$
6	1.45×10^{-1}	3.09×10^{1}
7	8.50×10^{-2}	6.37×10^{1}
8	2.59×10^{-2}	2.19×10^{2}
9	8.93×10^{-3}	1.50×10^{3}
10	9.80×10^{-3}	7.86×10^{3}

Experimental rate constant data

$$\begin{array}{r} \mathbf{Ar^{14+}+e} \rightarrow (\mathbf{Ar^{13+}})^{**} \\ \rightarrow (\mathbf{Ar^{13+}})^{*} + hv \end{array}$$

(Be-like)

Z. K. Huang et al., Astrophys. J. Suppl. 235, 2 (2018)

CSRm, Lanzhou Dielectronic recombination Trielectronic

Fitted Coeff from F	ficients for the RR-subtracted Δh Figure 3 for Two Different Value (Field-ionization)	V = 0 DR+TR Rate Coefficients s of n_{cutoff} and $n_{\text{max}} = 1000$ -free)
No	<i>n</i> _{cutoff}	$n_{\rm max} = 1000$

No.	n _{cutoff}		$n_{\rm max} = 1000$	
i	Ci	E_i	Ci	E_i
1	0.254	0.12	0.244	0.115
2	0.580	0.28	0.590	0.278
3	3.74	3.47	3.77	3.45
4	5.17	1.43	5.14	1.43
5	14.3	12.42	14.38	12.45
6	23.39	31.84	23.13	31.95
7	38.84	56.39	40.30	57.03

Note. The units of c_i and E_i are 10^{-3} cm³ s⁻¹ K^{3/2} and eV, respectively.

Errors: ~30% overall

~15% ion and electron current, counting statistics ~5% remaining (too long-lived) metatstable content ~20% electron beam density profile and ion position

Absolute normalization: the lifetime method

Tungsten ions: merged beams rate coefficients

https://www-amdis.iaea.org/meetings/UQ2016/

Talk in session on Experimental Atomic Collision Data

Tungsten ions: merged beams rate coefficients

Ø

Tungsten ions: plasma recombination rate constants

Molecular recombination measurements: Analysis

 $HCI^{+} + e \rightarrow H + CI + \epsilon_{_{kin}}$

O. Novotný, Astrophys. J. 777, 54 (2013)

Merged-beams high-resolution rate constant

Molecular recombination measurements: Analysis

 $HCI^{+} + e \rightarrow H + CI + \epsilon_{kin}$

O. Novotný, Astrophys. J. 777, 54 (2013)

Merged-beams high-resolution rate constant Overlap geometry 1.0 m **Calibration:** Lifetime method Beam overlap 10 cm edge 10⁻⁶ Intrinsic $^{2}\Pi_{3/2} \rightarrow ^{2}\Pi_{1/2}$ electron velocity α⁻⁻01 (cm³ s⁻¹) α⁻¹ 10⁻⁸ Effective distribution $v = 1 2 \dots$ energy distribution 10^{3} **Tail from** merging geometry f_{mb} (eV⁻¹) 10⁻⁹ 10⁻³ 10⁻² 10^{-4} 10⁻¹ 1 $E_{\rm d}$ (eV) 10^{-3} 10^{-2} 10⁻⁴ 10⁻¹ 1 **Binned signal contributions** E(eV) (fitted cross section values)

$\label{eq:model} \begin{array}{l} \mbox{Molecular recombination measurements: Analysis} \\ \mbox{HCI}^{+} + e \rightarrow \mbox{H} + \mbox{CI} + \epsilon_{\mbox{kin}} \end{array} \qquad \mbox{O. Novotný, Astrophys. J. 777, 54 (2013)} \end{array}$

Binned cross section

Storage rings equipped with cryogenic cooling (~4...15 K) of the vacuum chamber walls and the ion optical elements

- Reduce residual gas density small cryogenic Penning traps: ~10⁻¹⁶ mbar estimated

 Reduce background black-body radiation field to avoid excitation of rotations or vibrations kT ~ 0.026 eV · (T / 300 K)

Storage rings equipped with cryogenic cooling (~4...15 K) of the vacuum chamber walls and the ion optical elements

- Reduce residual gas density small cryogenic Penning traps: ~10⁻¹⁶ mbar estimated

- Reduce background black-body radiation field to avoid excitation of rotations or vibrations $kT \sim 0.026 \text{ eV} \cdot (T / 300 \text{ K})$

of rotational levels Example: CH⁺ *T*_{rot} 300 K 10 K (~ other diatomic hydrides) J 0.949 0.065 0 0.171 0.051 E(J=1) - E(J=0) = 2B1 2 3 0.219 0.0 = 0.0035 eV0.205 0.0 0.155 0.0

Thermal equilibrium populations

Storage rings equipped with cryogenic cooling (~4...15 K) of the vacuum chamber walls and the ion optical elements

- Reduce residual gas density small cryogenic Penning traps: ~10⁻¹⁶ mbar estimated

 Reduce background black-body radiation field to avoid excitation of rotations or vibrations $kT \sim 0.026 \text{ eV} \cdot (T / 300 \text{ K})$

- Enable beam lifetimes long enough for phase space cooling / stacking

The cryogenic storage ring CSR

Electrostatic cryogenic storage ring for atomic, molecular and cluster ions

Ø

Cryogenic storage ring CSR

View of CSR before first complete cool-down, spring 2015

HeH⁺ rotational levels – radiative relaxation

HeH⁺ rotational levels – radiative relaxation

HeH⁺ dissociative recombination – energy-resolved

Ø

Electron-ion merged beams facilities

Experimental areas at large heavy-ion accelerators

Summary

Dielectronic recombination: relaxed metastable states, complex open-shell ions

Low-energy cryogenic storage ring CSR (up to ~1 h ion-beam storage lifetime)

Dissociative recombination: rotationally cold molecular ions

Preliminary Data in analysis (not shown in edited version)

Acknowledgments – TSR

Stefan Schippers

Nigel Badnell

Oldřich Novotný

Kaija Spruck

Claude Krantz

Alfred Müller

Daniel Savin

Manfred Grieser

CSR electron collisions beamtime team

Oldřich Novotný

Daniel Paul

Manfred Grieser

Claude Krantz

Patrick Wilhelm

Ábel Kálosi

Sunny Saurabh

Visitor from Group of Plasma Physics Dept. of Surface and Plasma Science Faculty of Mathematics and Physics Charles University of Prague

Acknowledgments

CSR detectors.

electron cooler, laser experiments

- O. Novotný
- P. Wilhelm
- D. Paul
- S. Saurabh

A. Kálosi (visitor Prague)

- C. Krantz
- K. Spruck (Univ. Gießen)
- S. Vogel
- A. Becker
- M. Rimmler
- S. Lohmann
- S. Spaniol

- S. Schippers (Univ. Gießen)
- D. Schwalm
 - (MPIK/WIS Rehovot)

Microcalorimeter collaborators from Kirchhoff Inst. of Physics,

Univ. Heidelberg:

- S. Allgeier, C. Enss, A. Fleischmann,
- L. Gamer, D. Hengstler, S. Kempf,
- A. Pabiger, C. Pies

MPIK C. D. Schröter **R. Moshammer** T. Pfeifer

Funding

MPG Weizmann Institute

ERC/MPG

Astrolab@CSR

H. Kreckel

F. Grussie

E. Guerin

S. Kumar

J. Hörl

A. O'Connor

DFG Priority Program "Physics of the Interstellar Medium" NASA and NSF (Columbia Univ.)

CSR team

- R. von Hahn
- M. Grieser
- **F.** Fellenberger
- S. George
- M. Lange
- **R.** Repnow
- P. Herwig

- C. Krantz
- K. Blaum
- S. Vogel
- K. Spruck (Univ. Gießen)
- A. Becker
- H. Kreckel (Astrolab)
- F. Grussie (Astrolab)
- A. O'Connor (Astrolab)

and the MPIK workshops and labs

Collaborations CSR and experiments WIS Rehovot (O. Heber, D. Zajfman)

Univ. Greifswald (L. Schweikhard)

Bar-Ilan Univ. (Y. Toker)

Univ. Gießen (S. Schippers)

Columbia Univ. (D. W. Savin)

Univ. Louvain-la-Neuve (X. Urbain)

Univ. Kaiserslautern (G. Niedner-Schatteburg) Acad. Sci. Novosibirsk (A. S. Terekhov)

Theory

Univ. Le Havre (I. Schneider) **Purdue Univ. (C. Greene)** UC London (J. Tennyson)

C. Meyer J. Göck P. Mishra V. Schmidt

S. George

C. Breitenfeldt