2nd IAEA Technical Meeting on Collisional-Radiative properties of Tungsten and Hydrogen in Edge Plasma of Fusion Devices, 28 Nov. - 2 Dec. 2023, Vienna International Centre

Tungsten density and influx evaluations based on the latest atomic data in EAST plasma

ZHANG Ling^{1*}, ZHANG Fengling^{1,2}, MITNIK Darío^{3,1}, ZHANG Wenmin^{1,2}, CHENG Yunxin¹, HU Ailan¹, MORITA Shigeru^{4,1}, CAO Yiming^{1,5}, MA Jiuyang^{1,2}, LI Zhengwei^{1,5}, JIE Yinxian¹, LIU Haiqing¹

¹ Institute of plasma physics, Chinese Academy of Sciences, Hefei 230026, China

² University of Science and Technology of China, Hefei 230026, China

³ Instituto de Astronomía y Física del Espacio (IAFE), Buenos Aires 1428, Argentina
 ⁴ National Institute for Fusion Science, Toki 509-5292, Gifu, Japan
 ⁵ Anhui University, Hefei 230601, China

Acknowledgement: National Key Research and Development Program of China (2022YFE03180400, 2019YFE030403, 2018YFE0311100, 2018YFE0303104 and 2022YFE03020004), National Natural Science Foundation of China (Grant Nos. 12322512, 11905146, 11975273 and 12075283), and Chinese Academy of Sciences President's International Fellowship Initiative (PIFI) (Grant No. 2020VMA0001).

*Email: zhangling@ipp.ac.cn 29 Nov. 2023

Outline

- Background & Motivation
- Tungsten spectroscopic diagnostics
- Tungsten line identification and density profiles
- Tungsten influx evaluation: S/XB calculation
- Summary & Future work

Outline

Background & Motivation

- Tungsten spectroscopic diagnostics
- Tungsten line identification and density profiles
- Tungsten influx evaluation: S/XB calculation
- Summary & Future work

EAST PFCs upgrade

Full tungsten divertor from May 2021 First Wall: TZM (Titanium-Zirconium-Molybdenum) alloy Upper divertor: ITER-like W/Cu monoblock Lower divertor: W/Cu monoblock

Upper W-divertor

2018 Guard limiters antenna (LHW): $C \rightarrow W$ 2022/3 Main limiter: $C \rightarrow W$ 2022/5 Main limiter: $W \rightarrow Mo$ LHW / ICRF antenna: Cu / Fe

Guider limiter for LHW antenna

Intrinsic & extrinsic impurities; He, Li, (B), C, N, O, (Ne), (Si), (Ar), Fe, Cu, Mo, W...

Requirement of tungsten spectroscopy measurement

- Observation of W⁰-W²⁸⁺ ions existing in Div.-SOL-pedestal of ITER or EAST plasma is crucial important for tungsten production, penetration and edge transport study.
- M1 forbidden transition of W7+ W28+ have been observed in visible wavelength range in Shanghai EBIT, CoBIT and LHD.
- Quantitative study
 - Lack of W influx calculation except W⁰ (4009 Å)
 - W²⁴⁺-W⁴⁵⁺ ions and its density profiles are observed in EAST

EAST	Capability	Diagnostic
	Upper & lower div. W source - W ⁰ (4009Å)	Space-resolved VIS
Divertor	Upper div. W source (2D) – W ⁰ (4009Å, 4295Å, 5053Å) – W ¹⁺ (4218Å, 4348Å)	Space-resolved VIS (2D)
SOL	W influx (W ³⁺ - W ⁶⁺ : 500-1500Å)	VUV survey
(p=1.0-1.05)	W influx (W ³⁺ - W ⁶⁺ : 200-500Å)	EUV survey
Pedestal / edge	W influx & density - W ⁷⁺ -W ²⁰⁺ : 150-260Å	EUV survey
Bulk plasma (ρ⊴0.7)	W density profile - W ²⁴⁺ -W ⁴⁵⁺ : 15-140Å	Space-resolved EUV

A SIPP

Outline

- Background & Motivation
- Tungsten spectroscopic diagnostics
- Tungsten line identification and density profiles
- Tungsten influx evaluation: S/XB calculation
- Summary & Future work

Fast-time-response EUV spectrometers (5ms/frame)

		EUV_Short	EUV_Long_a	EUV_Long_c	EUV_Long_b
λ	Capability	5-138 Å		20-500 Å	
Λ	Operation	5-50 Å	40-180 Å	160-385 Å	245-500 Å
	lons He ⁺ , Li ⁺ -Li ²⁺ , C ²⁺ -C ⁵⁺ , O ²⁺ -O ⁷⁺ , Ne ⁺ -Ne ⁹⁺ , Si ⁴⁺ -Si ¹¹⁺ , Ar ⁹⁺ -Ar ¹⁵⁺ , Fe ⁴⁺ -Fe ²³⁺ , Cu ⁹⁺ -Cu ²⁶⁺ , Mo ⁴⁺ -Mo ³¹⁺ , W ³⁺ -W ⁶³⁺ ,			¹⁺ , ³⁺ -W ⁶³⁺ ,	

Z. Xu Nucl. Instrum. Meth. A1010 (2021) 165545

Status prior to 2021:

only EUV_Short and EUV_Long_a (scanning λ)

Grazing Incidence flat-field spectrometer

• Spectrometers

- Entrance slit: 30µm
- Gratings: 2400 g/mm (Short) 1200 g/mm (Long)
- Detector: Andor BO920U
 - 1024 x 256, 26µm/pixel
 - 1024 (H) spectral measurement
 - 256 (V) full binning: 5ms/frame
- Pulse motor for wavelength scan
- Laser light for optical alignment
- Turbo-molecular pump for vacuum

Space-resolved EUV spectrometers ($\rho \le 0.7$)

	λ range	Temporal Reso.	Spatial Reso.	Viewing range	Detector	
EUV_Short2	5-130 Å	15 ms/frame	≥0.3 cm	±25 cm	CMOS	
EUV_Long2	30-520 Å	200 ms/frame	≥0.8 cm	±45 cm	CCD	
lons (ρ≤0.7)	W ²⁴⁺ -W ⁶³⁺ , Mo ²⁴⁺ -Mo ³¹⁺ , Cu ¹⁹⁺ -Cu ²⁶ +, Fe ¹⁸⁺ -Fe ²³⁺ …					

Since 2021

Status prior to 2021: only EUV_Long2_U (scanning Z)

- Spectrometers
 - Entrance slit: 100µm
 - Space-resolved slit: 1mm
 - Gratings: 2400 g/mm (Short2) 1200 g/mm (Long2)
- Detector (Long2)
 - Andor BO920U:1024 x 256, 26µm/pix
 - 256 (H) spectral measurement
 - 1048 (V) space-resolved measurement

• Detector (Short2)

- Andor Marana-X: 2048 x 2048, 6.5µm/pix
- 2048 (H) spectral measurement
- 2048 (V) space-resolved measurement

✓ L. Zhang *Nucl. Instrum. Meth. A* 916 (2019) 169

✓ Y.X. Cheng *Rev. Sci. Instrum.* 93 (2022)123501

High spectral resolution is necessary for tungsten spectra observation and identification

 Also high accurate wavelength measurement
 Δλ=|λ_{obs}-λ_{sta}|≤0.03Å for EUV_Short; Δλ=|λ_{obs}-λ_{sta}|≤0.08Å for EUV_Long

 Higher spectral resolution at 8-65 Å for EUV_short with 2400g/mm grating

> Structure and ion composition of W-UTA changes dramatically with T_e

Z Xu Nucl. Instrum. Meth. A 1010 (2021) 165545

Observation of W-UTA with finer structure by using CMOS detector with smaller pixel size

W-UTA: tungsten unresolved transition array

Capability of fast time history observation of W ion distribution allowing W transport study during low-frequency sawtooth activity

✓ Y.X. Cheng *Rev. Sci. Instrum.* 93 (2022)123501

11

Full profile measurement extended to W ions with lower change state after upgrade of space-resolved EUV spectrometers

- Shell-like distribution in RF-heated H-mode, but not for tungsten accumulation case
- Radial (vertical) profiles of line intensity will help to line identification

Outline

- Background & Motivation
- Tungsten spectroscopic diagnostics
- Tungsten line identification and density profiles
- Tungsten influx evaluation: S/XB calculation
- Summary & Future work

Isolated W⁴⁰⁺-W⁴⁵⁺ lines are essential for quantitative analysis of radial profile of W ion density

- W lines are identified based on NIST database.
- W⁴³⁺ W⁴⁵⁺ lines with strong intensity are identified from W-UTA at ~60Å.
- Isolated W⁴⁰⁺ W⁴⁵⁺ lines with weak intensity is identified at longer wavelength range of 120-140Å.

Important lines for quantitative analysis
 W⁴³⁺ (E_i=2.210keV)
4s²4p-4s (61.334, 126.29Å)
• $M/44+ (E - 2.254ko)/)$
$ V = (E_i = 2.354 \text{ KeV}) $
454p-45 (00.93, 132.88A)
• W ⁴⁵⁺ (E _i =2.414keV)
4p-4s (62.336, 126.998Å)

Traditional method based on EFIT equilibrium and Abel inversion for analyzing radial profiles of impurity ion density

• Impurity density profile is analyzed from vertical profile of impurity line intensity

15

Z (cm)

ASIPP

Radial profiles of local emissivity and tungsten ion density

✓ L Zhang et al Nucl. Instrum. Meth. A 916 (2019) 169

Observation and identification of W ions with low ionization stage in a discharge with tungsten sputtering (T_{e0} ~3.0keV)

Impurity sputtering events occurred at t=2.946 s.

17

Glance at the full W spectra in 5-130 Å

- The discharge with strong W radiation is helpful to identify the lines from weekly ionized W ions
- 2nd and 3rd W-UTA are helpful to identify the fine structure of W-UTA

ASIPP

Glance at the full W spectra in 130-480 Å

• A lot of W⁵⁺-W⁸⁺ lines appear at longer λ

ASIPP

W lines identification at 130-220 Å

- W IX (W⁸⁺), W VIII (W⁷⁺), and W VII (W⁶⁺)
- Several lines from **W**⁸⁺ and **W**⁷⁺ ions are identified referring to the results from a vacuum spark.
- W⁶⁺ ions are identified based on NIST, fusion devices.

- ✓ Clementson J. et al 2015 Atoms 3 407-421
 - ✓ Ryabtsev A. et al 2015 Atoms 3 273-298

20

W lines identification at 220-330 Å

- Newly discovered W lines are indicated by light red labels.
- Several W⁶⁺ lines at 289-330 Å are identified referring to NIST, SSPX.

✓ Clementson J. 2010 J. Phys. B: At. Mol. Opt. Phys. 43 144009

Observation and identification of W ions with low ionization stages in a discharge with tungsten sputtering (T_{e0} =1.1keV)

• W sputtering events occurred at t=7.716 s.

T_e is basically sustained

Glance at the EUV spectra in 5-130 Å

• W-UTA are composed of W²²⁺- W²⁷⁺ in 25-40 Å band and W¹⁷⁺- W²⁷⁺ in 45-75 Å band at T_{e0} =1.1 keV, respectively.

Glance at the EUV spectra in 130-480 Å

- W-UTA at 150-280 Å could be composed of W⁵⁺-W²⁷⁺ referring to previous results in LHD^[2].
- The peak position of W-UTA moves from ~200 Å to ~175 Å region at T_{e0} =1.0 keV.
- When T_{e0} is 1.0 keV, a lot of W lines measured by EUV_Long_b appear in the wavelength range of 280-480 Å.

[2] Harte C.S. et al 2011 J. Phys. B: At. Mol. Opt. Phys. 44 175004

W line identification in 280-480 Å at low T_e

- W VII (W⁶⁺), W VI (W⁵⁺), W V (W⁴⁺)
- W⁵⁺ and W⁴⁺ ions are identified based on NIST database.
- W VI at 382.145 Å, 394.133 Å, and 395.301 Å are observed.

- ✓ Clementson J. *et al* 2010 *J. Phys. B: At. Mol. Opt. Phys.* 43 144009
- ✓ Clementson J. et al 2015 Atoms 3 407-421
- ✓ Kramida A.E. et al 2009 Atomic Data and Nuclear Data Tables 95 305-474

25

Evolution of W-UTA at 150-280 Å

During W sputtering, the peak position of W-UTA remains in the 200 Å region, regardless of T_{e0}.

- When T_{e0} <1.0 keV, after t₀+5ms, the peak location of W-UTA moves from 200 Å to 175 Å region.
- When 2.0<T_{e0} <3.0 keV, the peak intensity in the 200 Å region decrease after t₀+5ms, while two isolated W lines from higher ionization ions (173.624 Å and 176.618 Å) appear in the 175 Å region.

[1] Dong C.F. *et al* 2019 *Nucl. Fusion* 59 016020
[2] Harte C.S. 2011 *J. Phys. B: At. Mol. Opt. Phys.* 44 175004 26

Probably the feature of spectra depend on edge plasma confinement

Several W⁴⁺-W⁷⁺ lines appearing with strong intensity chosen for tungsten influx evaluation

	λ (Å)		Transitions			
Wq+	This work	Database	Relative (counts/5ms)	Lower level	Upper level	
W VIII (W ⁷⁺)	201.700 ± 0.02	201.739 ^a	11720 ^A	4f ¹³ 5p ⁶ ² F _{7/2}	4f ¹³ 5p ⁵ 5d 9/2	
	216.351 ± 0.01	216.219 ^b	34550 ^A	4f ¹⁴ 5p ⁶ ¹ S ₀	4f ¹⁴ 5p ⁵ (² P° _{1/2})5d (1/2,3/2)°1	
W VII (W ⁶⁺)	$\textbf{223.836} \pm \textbf{0.01}$	223.846 ^b	5872 ^A	4f ¹⁴ 5p ^{6 1} S ₀	4f ¹⁴ 5p ⁵ (² P° _{3/2})6s (3/2,1/2)° ₁	
	261.317 ± 0.01	261.387 ^b	13900 ^A	4f ¹⁴ 5p ^{6 1} S ₀	4f ¹⁴ 5p ⁵ (² P° _{3/2})5d (3/2,5/2)° ₁	
W VI	$\textbf{382.133} \pm \textbf{0.04}$	382.145 ^b	661 ^B	5d ² D _{3/2}	5f ² F ^o _{5/2}	
(W ⁵⁺)	394.072 ± 0.04	394.133 ^b	713 ^B	5d ² D _{5/2}	5f ² F ^o _{7/2}	
W V (W ⁴⁺)	449.673 ± 0.05	449.649 ^b	549 ^в	5d² ³ P ₁	5d(² D _{5/2})5f (5/2,5/2)° ₂	

Influx of W^{Z+} should be more accurate than W⁰ source when we considering the source of core tungsten
 Influx of W⁶⁺ has been estimated in HL-2A for W injected by LBO

ASIPP

Outline

- Background & Motivation
- Tungsten spectroscopic diagnostics
- Tungsten line identification and density profiles
- Tungsten influx evaluation: S/XB calculation
- Summary & Future work

Introduction of S/XB

S/XB: Ionization Events per Photon

• The ratio of flux of ions (due to ionization) to the emission in a spectrum line integrated along a line of sight.

The flux of impurity which ionizes in the line–of–sight from a metastable level σ is

$$\Gamma = n_e \, S_\sigma \int n_\sigma(\xi) \, d\xi$$

The emissivity in a transition $j \rightarrow k$ is

$$\epsilon_{jk} = A_{jk} \, n_e \, n_j = A_{jk} \, n_e \, n_\sigma \, \mathcal{F}_{j\sigma} \,,$$

where $\mathcal{F}_{j\sigma}$ is the effective contribution to the population of the upper level j from excitation from the metastable σ .

$$\Gamma = n_e S_\sigma \int \frac{\epsilon_{jk}(\xi)}{A_{jk} n_e \mathcal{F}_{j\sigma}} d\xi = \frac{S_\sigma}{A_{jk} \mathcal{F}_{j\sigma}} \times \int \epsilon_{jk}(\xi) d\xi$$

$$\Gamma = \frac{S_\sigma}{A_{jk} \mathcal{F}_{j\sigma}} \times \int \epsilon_{jk}(\xi) d\xi \equiv \mathcal{SXB}_{jk} \times \int \epsilon_{jk}(\xi) d\xi$$

$$= \mathcal{SXB}_{jk} \times I_{jk}$$

 $\mathcal{SXB}_{jk} = rac{\Gamma}{I_{jk}} = -rac{S_{\sigma}}{A_{jk} \mathcal{F}_{j\sigma}}$

- Electron-impact ionization
- Electron-impact excitation
- Radiative transition rates

For only one metastable, we need to calculate

$$S\mathcal{X}\mathcal{B}_{\sigma,ji} = \frac{S_{\sigma}}{A_{ji}\mathcal{F}_{j\sigma}} \qquad \qquad N_j \equiv n_e N_{\sigma}\mathcal{F}_{j\sigma} \longrightarrow \mathcal{F}_{j\sigma} = \frac{1}{n_e} \frac{N_j}{N_{\sigma}}$$

For many metastables, we need to modify the expression to:

 $\mathcal{SXB}_{ji} = rac{1}{A_{ji}} \left(rac{S_{\sigma}}{\mathcal{F}_{j\sigma}} + rac{S_{\mu}}{\mathcal{F}_{j\mu}} + \cdots
ight)$

and in this case, $\mathcal{F}_{j\sigma}$ is defined as

$$N_j \equiv n_e \left(N_\sigma \mathcal{F}_{j\sigma} + N_\mu \mathcal{F}_{j\mu} + \cdots \right)$$

 $S_{\sigma}\!\!:$ the ionization rate coefficient from metastable level σ

 $F_{j\sigma}$: the effective contribution to the population of the upper level j from excitation of the metastable σ

 A_{ik} : the radiative rate coefficient for the transition j to k

[1] K. Behringer PPCF 31, 2059 (1989)[2] C. P. Ballance J. Phys B 46, 055202 (2013).

Simplest case: 3-levels model

C. P. Ballance J. Phys B 46, 055202 (2013).

$$\mathcal{F}_{31} = \frac{Q_{13}(A_{21} + n_e Q_{21} + n_e Q_{23}) + n_e Q_{12} Q_{23}}{n_e Q_{23}(A_{32} + n_e Q_{32}) + (A_{21} + n_e Q_{21} + n_e Q_{23})(A_{31} + A_{32} + n_e Q_{31} + n_e Q_{32})}$$

For $n_e < 10^{14} \text{ cm}^{-3}$, $(n_e Q_{31} + n_e Q_{32}) << A_{31} + A_{32}$

$$\begin{aligned} \mathcal{F}_{31} &\approx \frac{Q_{13}(A_{21} + n_e Q_{21} + n_e Q_{23}) + n_e Q_{12} Q_{23}}{(A_{21} + n_e Q_{21} + n_e Q_{23})(A_{31} + A_{32})} \\ &= \frac{Q_{13}(A_{21} + n_e Q_{21} + n_e Q_{23})}{(A_{21} + n_e Q_{21} + n_e Q_{23})(A_{31} + A_{32})} + \frac{n_e Q_{12} Q_{23}}{(A_{21} + n_e Q_{21} + n_e Q_{23})(A_{31} + A_{32})} \\ &\approx \frac{Q_{13}}{(A_{31} + A_{32})} + \frac{n_e Q_{12} Q_{23}}{(A_{21} + n_e Q_{21})(A_{31} + A_{32})} \end{aligned}$$

Low density limit ($n_e < 10^6 \text{ cm}^{-3}$, depending on the line)

$$\mathcal{F}_{31} = \frac{Q_{13}}{(A_{31} + A_{32})}$$

Intermediate density plateau, $A_{21} << n_e Q_{21}$ $\mathcal{F}_{31} \sim \frac{Q_{13}}{(A_{31} + A_{32})} + \frac{Q_{12} Q_{23}}{Q_{21} (A_{31} + A_{32})}$

Test: S/XB calculation for 3 VUV lines (1)

- S, A and Q from Ref. [2].
- CRM include 3 levels, and only one metastable level included in $F_{j,\sigma}$.

[2] C. P. Ballance J. Phys B 46, 055202 (2013).

Test: S/XB calculation for 3 VUV lines (2)

- S from Ref. [2]
- A and Q from FAC, AutoStructure and HULLAC.
- > CRM include 3 levels, and only one metastable level included in $F_{j,\sigma}$.

Test: S/XB calculation for 3 VUV lines (3)

• S from Ref. [2]

20

20

20

- A and Q are from FAC, AutoStructure and HULLAC.
- CRM include 82 levels, and only one metastable level included in $F_{j,\sigma}$.

Preliminary W influx evaluation in EAST

	λ (Å)		Transitions			
Wq+	This work	Database	Relative (counts/5ms)	Lower level	Upper level	
W VIII (W ⁷⁺)	201.700 ± 0.02	201.739 ^a	11720 ^A	4f ¹³ 5p ^{6 2} F _{7/2}	4f ¹³ 5p ⁵ 5d 9/2	
	216.351 ± 0.01	216.219 ^b	34550 ^A	4f ¹⁴ 5p ^{6 1} S ₀	4f ¹⁴ 5p ⁵ (² P° _{1/2})5d (1/2,3/2)° ₁	
W VII (W ⁶⁺)	$\textbf{223.836} \pm \textbf{0.01}$	223.846 ^b	5872 ^A	4f ¹⁴ 5p ^{6 1} S ₀	4f ¹⁴ 5p ⁵ (² P° _{3/2})6s (3/2,1/2)° ₁	
	261.317 ± 0.01	261.387 ^b	13900 ^A	4f ¹⁴ 5p ^{6 1} S ₀	4f ¹⁴ 5p ⁵ (² P° _{3/2})5d (3/2,5/2)° ₁	
W VI	$\textbf{382.133} \pm \textbf{0.04}$	382.145 ^b	661 ^B	5d ² D _{3/2}	5f ² F ^o _{5/2}	
(W^{5+})	394.072 ± 0.04	394.133 ^b	713 ^B	5d ² D _{5/2}	5f ² F ^o _{7/2}	
W V (W ⁴⁺)	449.673 ± 0.05	449.649 ^b	549 ^B	$5d^{2} {}^{3}P_{1}$	5d(² D _{5/2})5f (5/2,5/2)° ₂	

The S/XB calculation for W⁴⁺, W⁵⁺, W⁶⁺ and W⁷⁺ ions:

- S from OPEN ADAS
- A and Q are from FAC and AutoStructure
- CRM include full levels
- > But only one metastable level include in $F_{i,\sigma}$

- \checkmark generates an ADF04 files, compatible with ADAS
- \checkmark construct the population matrix
- \checkmark solve the level population
- ✓ produce a synthetic spectra based on the emissivity of each line (n_i*A_{ji})

Preliminary W influx evaluation in EAST (W⁴⁺)

(a) Line intensity observed in EAST #113757 (b) W⁴⁺ influx evaluated from line 449.649 Å at $T_e=10.8eV$

35

ASIPP

Preliminary W influx evaluation in EAST (W⁵⁺)

(b) W⁵⁺ influx evaluated from line 394.133 Å at $T_e=15.5eV$

36

ASIPP

Preliminary W influx evaluation in EAST (W⁶⁺)

37

Preliminary W influx evaluation in EAST (W⁷⁺)

38

A CTDD

Outline

- Background & Motivation
- Tungsten spectroscopic diagnostics
- Tungsten line identification and density profiles
- Tungsten influx evaluation: S/XB calculation
- Summary & Future work

Summary & future work

- Set of fast-time-response EUV spectrometers and space-resolved EUV spectrometers have been developed in EAST tokamak to investigate the W spectra composition and W ion distribution respectively.
- Vertical intensity profiles of W⁴²⁺-W⁴⁵⁺ are used to calculate the ion density profiles
- Totally 249 W lines observed and well identified in EUV range, in which 83 lines from W²²⁺⁻ W⁴⁵⁺ ions, **107 lines from W⁴⁺⁻ W⁸⁺ at 160-480 Å, 59 lines are newly discovered** including several isolated W lines with strong intensity.
- Preliminary calculation of S/XB has been finished and applied to evaluate the W ion influx.
- More precisely calculation of level population with CRM including full levels and many metastables is being performed.

Future plan on VIS spectroscopy

- Endoscopic optical design
- Two optics
 - 2D imaging (Div. & edge)
 - 1D large viewing range (EAST full cross section)
- Main components
 - Shutter, quartz window
 - Optics, fiber bundles
 - Spectrometer, detector

• Endoscopic optics

2D at upper divertor: 85 x 38 cm²
(poloidal x toroidal, remote controllable)
1D full radial profile: ΔZ=145 cm

- Fiber bundles
 - 2D: 11 x 10 (50/62.5 μm)
 - 1D: 60 (115/125µm)
- Quartz window for viewing port

- Shutter with supersonic motor
- Spectrometers (MK-300)
- Entrance slit: 0.01-4.0mm
- Gratings: 2400, 1200, 300 g/mm
- Detector: Andor Marana CMOS
 - 2048 x 2048 pixel,
 - 11µm, 22.53 x 22.53 mm

Development & Commissioning

- System design: from Sep. 2020
- Manufacture & delivery: April. 2022
- Installation: Oct.12 Nov. 7, 2022
- Optical alignment: mid. of Sep. 2023
- 2nd Calibration: end of Sep. 2023

Future plan on VIS spectroscopy

Time (s)

Φ(°)

Thanks for your attention! ASIPP

Specifics of M1 lines

Comparable

to E1

Fusion plasma

TIXIV

2118Å/182Å

FeXVIII

975Å/94Å

A [s⁻¹]

8×10⁻²

2×10¹

5×10²

2×10⁴

ArX

5533Å/165Å

 n_{e} (cm⁻³)

EBIT

10⁹~10¹⁰

Intensity depend on electron density.

e. g. $A \propto Z^{10}$

٠

•

S. Morita, 6th APCPP: AAPPS-DPP (2022) H. W. Drawin, Phys. Scr. 24 (1981)

Observation of M1 lines

Visible M1 lines from W⁷⁺ - W²⁸⁺ ions observed in EBIT and LHD

TABLE I. Visible wavelength of tungsten forbidden transition, in nm.

Ions	CoBIT	E_{C} (eV)	SH-HtscEBIT	E_{S} (eV)	MCF device
28	365.25, 393.06 [1]	940	220.97, 365.36, 393.20 [10]		344.48 [11]
27			377.743 [10]		337.73 [11]
26	389.41, 464.68, 501.99, 389.41, 464.68, 501.99 [1]	825	263.26, 291.89, 333.75, 335.76, 389.43, [10]	1200	389.39, 333.70, 335.73 [1
25	383.99, 400.88, 406.92, 421.28, 451.15,	775	493.84, 587.63, 226.97 [10]		
	467.59, 469.21, 493.62 [1]				
24	364.58, 374.34, 375.70, 379.64, 386.23,	725			
	389.89, 392.62, 406.49, 408.58, 409.97,				
	419.35, 425.17, 447.36, 467.80, 468.22,				
	471.18 [1]				
23	366.48, 375.18, 388.27, 409.44, 432.32,	675			
	432.66, 437.90, 438.30, 441.52, 449.46,				
	459.25[1]				
22	384.32, 446.95 [1]	630			
21	382.21, 415.83, 424.17, 442.69, 444.58,	585			
	450.70, 451.17, 459.99, 463.50, 468.39 [1]				
20	388.25, 402.91, 406.62, 422.05, 425.27,	535			
	433.14, 435.82, 438.02, 448.47, 462.40 [1]				
19	402.52, 433.89, 441.06, 456.43, 474.49 [1]	495			
18	375.90, 376.85, 396.83, 401.22, 419.68,	455			
	434.01 [1]				
17	373.69, 391.93 [1]	415			
16	472.39 [1]	380			
15	374.39, 378.14, 384.15, 384.76, 412.17,	340			
	414.29, 420.52, 424.45, 426.47, 428.43,				
	436.92, 450.23 [1]	000			
14	527.27, 388.19, 399.81, 496.55, 535.9,	320			
10	549.33, 540.53, 451.68, 483.26, 480.09	320	549.3, 540.5, 451.65, 483.26, 480.08 [2]	200	
13	457.20, 459.08, 472.08, 457.20, 459.08,	280	462.64, 549.95, 432.24, 409.52,	300	
10	472.08 [1]	280	540.23, 527.74, 480.03, 717.77 [9]	300	
12	401.38, 451.68 [1]	250	527.74, 388.10, 399.78, 490.52, 535.87, 000.3,	232	
11	388.19, 399.81, 440.04, 452.77, 454.04,	225	527.61 [5]	220	
10	400.48 [1]		410 75 446 82 452 40 468 22 527 44 [6]	170 F	
10	400.66 438.68 481.55 533.20 609.41	150	413.75, 440.05, 452.40, 400.22, 527.44 [0]	170.5	
9	403.00, 430.00, 401.33, 333.20, 008.41 400.66 438.68 481.55 533.20, 609.41 [9]	150	431.73, 447.13, 477.23, 470.30, 611.13, 645.48		
8	405.00, 456.00, 461.55, 555.20, 008.41 [6] 387.15 405.73 421.78 447.14 477.90	130	011.13, 043.40 421 72 447 12 477 95 470 56	197.1	
0	570 52 611 17 [1.8]	130	401.10, 441.10, 411.20, 410.00, 611 13 645 48 [7]	141.1	
7	574.47 [3]	115	574 49 [4]	90	
	014.41 0	110	014.40 [4]	30	

Intensity profiles M1 line in LHD

 Komatsu et al. Physica Scripta, T156, 2012.
 Kobayashi et al. Physical Review A, 92, 2015.
 Mita et al. Atoms, 5, 2017.
 Lu, Q et al. Physical Review A, 99, 2019.
 Lu, Q i et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 279, 2022.
 Lu, Q i et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 262, 2021.
 Lu, Q et al. Physical Review A, 103, 2021.
 Priti et al. Physical Review A, 102, 2020.
 Zhao, Z. Z. et al. Journal of Physics B, 48, 2015.
 Qiu, M. L. et al. Journal of Physics B, 48, 2015.
 Kato, D. et al. Physica Scripta, T156, 2013.

EAST	Capability	Diagnostic
	Upper & lower div. W source - W ⁰ (4009Å)	Space-resolved VIS
Divertor	Upper div. W source (2D) – W ⁰ (4009Å, 4295Å, 5053Å) – W ¹⁺ (4218Å, 4348Å)	Space-resolved VIS (2D)
SOL	W influx (W³⁺-W⁶⁺: 500-1500Å)	VUV survey
(p=1.0-1.05)	W influx (W³⁺-W⁶⁺: 200-500Å)	EUV survey
Pedestal / edge	W influx & density - W ⁷⁺ -W ²⁰⁺ : 150-260Å	EUV survey
Bulk plasma (ρ≤0.7)	W density profile – W ²⁴⁺ -W ⁴⁵⁺ : 15-140Å	Space-resolved EUV