

> 0 0 0

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0

0 0 0 0 Vibrationally and ro-vibrationally resolved 0 0 collisional radiative modelling of molecular hydrogen: current status and outlook 0 0

D. Wünderlich, R. Bergmayr, U. Fantz

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 - EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission, Neither the European Union nor the European Commission can be held responsible for them.

0 0 0 0 0 0 0 0

0

0

0

0 0

0

0 0 0

0 0 0 0

0

0 0 0 0 0

Population modelling

Population models

- Predict population densities in dependence of plasma parameters (T_e, n_e, ground state densities).
- Main field of application: plasma diagnostics.

Collisional radiative models

Balance all relevant exciting and de-exciting reactions.

- \Rightarrow Needed: extensive data base of reaction probabilities.
- \Rightarrow Drastically increased complexity for molecules (vibrational and rotational excitation).

Error bar of model results directly correlates with the quality of the used input data.

Plasmas for fusion: parameter variations over a wide range

Both cases:

- Wide parameter range.
- Transition ionizing → recombining plasma.

(Possible) relevance of...

- Different plasma regimes.
- Isotopes of H₂.
- Optical thickness.
- Plasma-wall interaction

Application of population models:

- Interpreting diagnostics results.
- Used in transport codes.

Needed as input: atomic and molecular data (reaction probabilities).

The role of molecules for changing plasma parameters...

... and their role for recombination and ionization of the plasma

Yacora: a flexible solver for Collisional Radiative models

Yacora^[1] is a flexible (0D)-solver for Collisional Radiative models:

- Used and improved for more than 20 years.
- Almost all available CR models are relevant for application in plasmas used for fusion:

[1]: D. Wünderlich et al, Atoms 4, **2016**, 26

CR model for		# states	Comment
	Electronic states only	33	Issues with some cross sections, well benchmarked
H ₂	Some vibrational states	214	Issues with some cross sections, well benchmarked
	Vib-rot resolved	>626	Extended Corona models for different transitions
	Н	44	Coupling to H^+ , H_2^+ , H_3^+ , H^- , very well benchmarked
Не		19	Very well benchmarked
	Ar	16	Well benchmarked
	Ar ⁺	84	Only a collection of input data, not benchmarked
N_2	Electronic states only	6	Includes energy transfer to metastable Ar
C ₂	Vibrationally resolved	80	
СН	Vibrationally resolved	29	
Cs		11	Includes MN H [–] with Cs ⁺ , well benchmarked

Yacora: a flexible solver for Collisional Radiative models

Yacora^[1] is a flexible (0D)-solver for Collisional Radiative models:

- Used and improved for more than 20 years.
- Almost all available CR models are relevant for application in plasmas used for fusion:

[1]: D. Wünderlich et al, Atoms 4, **2016**, 26

CR model for		# states	Comment
	Electronic states only	33	Issues with some cross sections, well benchmarked
H ₂	Some vibrational states	214	Issues with some cross sections, well benchmarked
	Vib-rot resolved	>626	Extended Corona models for different transitions
	Н	44	Coupling to H ⁺ , H ₂ ⁺ , H ₃ ⁺ , H ⁻ , very well benchmarked
	Не	19	Very well benchmarked
	Ar	16	Well benchmarked
	Ar ⁺	84	Only a collection of input data, not benchmarked
N ₂	Electronic states only	6	Includes energy transfer to metastable Ar
C ₂	Vibrationally resolved	80	
СН	Vibrationally resolved	29	
Cs		11	Includes MN H [–] with Cs ⁺ , well benchmarked

Energy levels within the hydrogen molecule

Combined application of different models for H₂

Wish list for a population model for molecular hydrogen:

- Can describe emission bands ro-vibrationally resolved .
- Ability to describe impact of ro-vibrational excitation on reaction kinetics.
- Availability for hydrogen and deuterium over a broad range of plasma regimes.

\Rightarrow Ro-vibrationally resolved models needed!

- Available input data base (reaction probabilities) not sufficient for constructing such models.
- Use a stepwise approach with the final aim to construct a ro-vibrationally resolved extended Corona model:

• Effort of transferring the model to D₂, T₂, ... increases drastically with the level of detail. For example electronic CR models can be directly applied to the isotopomeres of H₂.

Overview of the presentation

Electronic model: overview

Main aims of the electronic model:

- Up to now, this model is a working horse for evaluating diagnostics results (scaled to the full emission band).
- Check, which reactions have to be included into an extended ro-vibrationally resolved Corona model.
- Validation of the existing reaction probabilities. Check new input data. Validate procedures for creating new data, e.g. by scaling.

Status prior to 2017:

Significant inconsistencies even in the reaction probabilities for the most simple excitation reaction, namely electron collision from the ground state X¹:

- Data collections by [2] and [3]: only a few reactions.
- Calculations by [4]: only a few transitions, but isotope effect.
- Miles^[5]: semi empiric cross sections, 1972.
- Janev^[6]: summary of measurements and calculations, 2003.

[5]: W.T. Miles et al, J. Appl. Phys. 43, **1972**, 678 [6]: R.K. Janev et al, Report JÜL-4105, 2003

Since 2017:

MCCC (Molecular Convergent Close-Coupling), fully quantum-mechanical^[7]. Close collaboration with the Group of D. Fursa, Curtin University, Australia.

[7]: L. Scarlett et al, ADNDT 137, **2021**, 101361

[2]: T. Tabata et al, ADNDT 76, 2000, 1
[3]: J.S. Yoon et al, J. Phys. Chem. Ref. Data 37, 2008, 913
[4]: R. Celiberto et al, ADNDT 77, 2001, 161

Electronic model: MCCC cross sections

MCCC cross sections implemented in the electronically resolved Yacora model:

- Low pressure, low-temperature lab experiment.
- T_e and n_e from Langmuir probe.
- Low electron densities (<10¹⁷ m⁻³).

Several excited states: agreement measurement \leftrightarrow CR model much better than using previously available cross sections^[8].

Application to plasma diagnostics:

- Strong impact on results.
- Example: linear effect on density ratio n(H)/n(H₂), but affects also particle fluxes, ...

[8]: D. Wünderlich et al, J. Phys. D 54, 2021, 115201

Electronic model: investigations towards the full model(s)

Relevance of different excitation channels:

- Can strongly vary during plasma parameter variations, e.g. the onset of plasma detachment with T_e decrease and n_e roll-over.
- Impact of individual states, as example cascades from energetically higher levels.
- ⇒ An extended ro-vibrationally resolved Corona model may be sufficient for fulfilling the wish list.

Overview of the presentation

Vibrationally resolved model

Main aims of the vibrationally resolved CR model:

- Gain insight in the reaction dynamics inside the manifold of vibrational states of the ground state X¹.
- Test-case for the final ro-vibrationally resolved Corona model(s).

Status prior to 2022^[1]:

- The model included a limited set of reactions interconnecting the states X¹(v) and some electronically excited states.
- No self-consistent description of $n(X^1,v)$ possible, T_{vib} used as input parameter for the model.

[1]: D. Wünderlich et al, Atoms 4, **2016**, 26

Since 2022^[8]:

- Updated input cross sections for processes (involving X¹) already implemented into the previous model.
- Additional reaction channels identified and added.
- Aim: self-consistent determination of the vibrational ground state distribution.
- Still an issue: processes like vibrational re-distribution at surfaces not included due to missing reaction probabilities.

[8]: R. Bergmayr et al, Eur. Phys. J. D 77, **2023**, 302

Vibrationally resolved model: list of included reactions

Reaction		Prior to 2022	Since 2022
Electron Impact (De-) Excitation (EIE)	$e + H_2(v) \rightarrow e + H_2(v')$	Buckman 1985	Janev 2015
Electron Impact Dissociation (EID)	$e + H_2(v) \rightarrow e + H_2(n>1) \rightarrow e + H + H$	Celiberto 1999	МССС
Dissociative Attachment (DA)	$e + H_2(v) \rightarrow H + H^-$	Bardsley 1979	Horacek 2004
Charge Exchange (CX)	$H^+ + H_2(v) \rightarrow H + H_2^+$	Janev 2008	v=0: Urbain 2013 + Holliday 1971 v>0: Errea 2007, Janev 2003
Non-Dissociative Ionization (NDI)	$e + H_2(v) \rightarrow e + e + H_2^+$	Wünderlich 2021	Wünderlich 2021
Radiative Recombination (RR)	$e + H_2^+ \rightarrow H_2(v)$	Sawada 1995	Sawada 1995
3-body Recombination (C3PR)	$e + e + H_2^+ \rightarrow e + H_2(v)$	Sawada 1995	Sawada 1995
Transitions via B and C	Electron Impact (De-)Excitation Spontaneous Emission	Celiberto 2001, Janev 2003 Fantz 2006	MCCC Fantz 2006
Dissociative Ionization (DI)	$e + H_2(v) \rightarrow e + e + H + H^+$	-	Wünderlich 2021
Proton Impact (De-) Excitation (PIE)	$H^{+} + H_2(v) H^{+} + H_2(v')$	-	Krstic 2002 + 2005 (Δv=4)
Proton Impact Dissociation (PID)	$\begin{array}{l} H^+ + H_2(v) \rightarrow H^+ + H + H \\ H^+ + H_2(v) \rightarrow H + H^+ + H \end{array}$	-	Janev 2003
H- Associative Detachment (H-AD)	$H^- + H \rightarrow H_2(v') + e$	-	Cizek 1998
Hydrogen Atom Impact Dissociation (HAID)	H + H ₂ (v) → H + 2 H	-	Esposito 1999 rates
Hydrogen Molecule Impact Excitation (HMIE)	VT: $H_2(v) + H_2(w) \rightarrow H_2(v\pm 1) + H_2(w)$ VV: $H_2(v) + H_2(w+1) \rightarrow H_2(v+1) + H_2(w)$	-	Matveyev 1995 rates
H_3^+ Dissociative Recombination (H3+DR)	$e + H_3^+ \rightarrow H + H_2(v')$	-	Janev 2015 + Strasser 2001
Hydrogen Atom Impact (De-) Excitation (HAIE)	$H + H_2(v=0) \rightarrow H + H_2(v'>0)$	-	Janev 2003

Vibrationally resolved model: list of included reactions

Reaction		Prior to 2022	Since 2022
Electron Impact (De-) Excitation (EIE)	$e + H_2(v) \rightarrow e + H_2(v')$	Buckman 1985	Janev 2015
Electron Impact Dissociation (EID)	$e + H_2(v) \rightarrow e + H_2(n>1) \rightarrow e + H + H$	Celiberto 1999	MCCC
Dissociative Attachment (DA)	$e + H_2(v) \rightarrow H + H^-$	Bardsley 1979	Horacek 2004
Charge Exchange (CX)	$H^+ + H_2(v) \rightarrow H + H_2^+$	Janev 2008	v=0: Urbain 2013 + Holliday 1971 v>0: Errea 2007, Janev 2003
Non-Dissociative Ionization (NDI)	$e + H_2(v) \rightarrow e + e + H_2^+$	Wünderlich 2021	Wünderlich 2021
Radiative Recombination (RR)	$e + H_2^+ \rightarrow H_2(v)$	Sawada 1995	Sawada 1995
3-body Recombination (C3PR)	$e + e + H_2^+ \rightarrow e + H_2(v)$	Sawada 1995	Sawada 1995
Transitions via B and C	Electron Impact (De-)Excitation Spontaneous Emission	Celiberto 2001, Janev 2003 Fantz 2006	MCCC Fantz 2006
Dissociative Ionization (DI)	$e + H_2(v) \rightarrow e + e + H + H^+$	-	Wünderlich 2021
Proton Impact (De-) Excitation (PIE)	$H^{\scriptscriptstyle +} + H_2(v) H^{\scriptscriptstyle +} + H_2(v')$	-	Krstic 2002 + 2005 (Δv=4)
Proton Impact Dissociation (PID)	$\begin{array}{l} H^+ + H_2(v) \rightarrow H^+ + H + H \\ H^+ + H_2(v) \rightarrow H + H^+ + H \end{array}$	-	Janev 2003
H- Associative Detachment (H-AD)	$H^- + H \rightarrow H_2(v') + e$	-	Cizek 1998
Hydrogen Atom Impact Dissociation (HAID)	$H + H_2(v) \rightarrow H + 2 H$	-	Esposito 1999 rates
Hydrogen Molecule Impact Excitation (HMIE)	VT: $H_2(v) + H_2(w) \rightarrow H_2(v\pm 1) + H_2(w)$ VV: $H_2(v) + H_2(w+1) \rightarrow H_2(v+1) + H_2(w)$	-	Matveyev 1995 rates
H_3^+ Dissociative Recombination (H3+DR)	$e + H_3^+ \rightarrow H + H_2(v')$	-	Janev 2015 + Strasser 2001
Hydrogen Atom Impact (De-) Excitation (HAIE)	$H + H_2(v=0) \rightarrow H + H_2(v'>0)$	-	Janev 2003

Vibrationally resolved model: data needs

The dissociative attachment process is a good example:

- Several reaction channels possible: via the resonances $H_2^-(X^2\Sigma_u^+)$, $H_2^-(B^2\Sigma_g^+)$ and $H_2^-(C^2\Sigma_g^+)$.
- Previously used data^[9] included only the channel via $H_2^{-}(X^2\Sigma_u^{+})$.

$$e^- + H_2(v) \rightarrow H_2^- \rightarrow H(1s) + H^-$$

[9]: J. N. Bardsley and J. M. Wadehra, Phys. Rev. A 20, **1979**, 1398
[10]: V. Laporta et al, Plasma Phys. Contr. Fus. 63, **2021**, 085006
[11]: J. Horáček et. al, Phys. Rev. A 70, **2004**, 052712

- The most recent cross sections^[10] consider the other resonances. But available only for a few H₂(v).
- Use instead cross sections from^[11]: only for the $H_2^{-}(X^2\Sigma_u^+)$ resonance but available for $H_2(v=0...13)$.

Overview of the presentation

Ro-vibrational model: overview

Main aims of the ro-vibrationally resolved Corona model:

- Planned to be an integral part of evaluation diagnostics results over a broad range of plasma regimes.
- Model results can be directly compared with diagnostics results; no scaling needed.
- Enables diagnostics access to parameters like T_{gas} and T_{vib} than can be of high relevance for the reaction kinetics.

Status prior to 2022:

• Extended version of vibrationally resolved models for selected transitions, most prominently the Fulcher band.

Since 2022:

- Critical check of the input data, update to (vibrationally resolved) MCCC cross sections.
- Treatment of the non-diagonal rotational transitions by a simple scaling factor^[12].
 Planned use of ro-vibrationally resolved cross sections when available (collaboration Group of D. Fursa).
- Extensive benchmark to different plasma experiments.

[12]: B. Xiao et al, *Plasma Phys. Control. Fusion* 64, **2004**, 653

Ro-vibrational model: results

Up to now pure Corona models (e.g. Fulcher band)...

- Several successful benchmarks to the experiment.
- Example: Low-power plasma at the negative ion source test facility BATMAN Upgrade

Simulation predicts absolute emissivity \pm 20-40 % (previous model: \pm 140-180 %).

Next aim: broaden the set of available test cases.

Extremely useful would be: Fulcher spectra for different divertor regimes (attachment/detachment) & known plasma parameters.

Data needs: a wish list, part l

Significant progress made but still a lot of data missing. Examples are:

- **Dissociative electron attachment** to (ro-)vibrationally and electronically excited states of H₂. Vibrationally: full set for D₂, just a few v for H₂. Electronically: only rate constants for n=2 and n>2 states.
- **Charge exchange** of ro-vibrationally and electronically excited states of H₂ with H⁺. Vibrationally: several sets which have to be combined. Electronically: Simple estimation for rate constant and cross sections for n>3.
- H impact excitation of H₂(X¹,v)→H₂(X¹,v').
 Cross sections available only for v=0.
- **H impact dissociation** of H₂(X¹,v). Only rate coefficients available.
- **Dissociative recombination** of H₃⁺. Only total cross section and branching ratios available.
- Further reactions involving H₂⁺ and H₃⁺ influencing H₂(X¹,v).
- H_2 impact excitation of $H_2(X^1,v) \rightarrow H_2(X^1,v')$. Only rate coefficients available for $\Delta v = \pm 1$.
- H⁻ electron detachment H⁻ + H₂(v) \rightarrow H₂(v') + H + e⁻. Cross sections only for v=0 without final state resolution.
- Lifetimes of (ro-)vibrationally and electronically excited states of $H_2 \Rightarrow$ predissociation, autoionisation, quenching, ...
- Probabilities for typical wall processes $H_2(X^1,v) \rightarrow H_2(X^1,v')$, under the involvement of e.g. tungsten, beryllium, ...

Describing the plasma edge: input data for D_2 essential. Ideally also T_2 , but scaling may be possible, following the data from H_2 and D_2 .

Conclusions & Yacora on the Web

CR models based on Yacora ...

- Well benchmarked models for several atomic and molecular species.
- Applied within numerous collaborations worldwide.
- Steady improvement of the used input data.
 Example: MCCC cross sections for H₂, solving a very persistent issue.

22

www.yacora.de

- Online access to selected Yacora CR models
- Available up to now: models for H, H₂ and He.

Yacora on the Web Providing collisional radiative models for plasma spectroscopis	This website is maintained by
Home Help	
This website was designed to familiarise the public with some of the existing coll the flexible 'racora package. The H, H ₂ and He models have been available, hither implemented in the future. Users of the web application are to register. Extensive documentation of this web is also available to unregistered users under the <i>Help</i> tab in the top bar of this pap <i>Please cite 'D. Wünderlich and U. Fantz, Atoms 4</i> , 2016, 26, doi:10.3390/atoms404 web application.	rto. Other models are to be osite and the models implemented ge.
This server is provided by IPP; www.ipp.mpg.de. Log in Name Password Log in Forgoten your password? If so, we can send you a new one. New user? If you have no account here, pass over to the registration form.	

D. Wünderlich, J. Quant. Spectrosc. Radiat. Transfer. 240, 2020, 106695

Data needs: a wish list, part II

... and now to something completely different ...

... related to an ECR charge breeder diagnostics. Used are cross sections for:

 $e^{-} + K^{4+} \rightarrow 2e^{-} + K^{5+},$ $e^{-} + K^{5+} \rightarrow 2e^{-} + K^{6+},$

... all charge states in between ...

 $\mathrm{e}^{\scriptscriptstyle -} + \mathrm{K}^{\mathrm{12+}} \xrightarrow{} \mathrm{2e}^{\scriptscriptstyle -} + \mathrm{K}^{\mathrm{13+}}$

These cross sections are available but some of these have reported uncertainties of up to 200 % which directly impacts the sensitivity of the diagnostics.