

DETAILED CHARGE EXCHANGE NEUTRAL DISTRIBUTION MODELLING FOR THE ITER MAIN WALL

November 28 2023 <u>S. Wiesen</u>, S. Brezinsek, S. Rode, J. Romazanov, K. Schmid, P. Boerner, U. v. Toussaint, et al.

Mitglied der Helmholtz-Gemeinschaft

Rationale

- ERO2.0 requires detailed distribution of neutral particles impinging specfic "diagnostic" surfaces, i.e. mirrors (c.f. today's talk S. Rode, IO-Contract: IO/20/CT/4300002242)
- EIRENE post-processing of S. Lisgos "repository" of SOLPS4.3 simulations with DivIMP extension of grids up to FW
- Set of simulations based on A. Khan NME 2019 WallDYN paper
- Some modifications in EIRENE to also have both energy and angular distributions
- Python tools for plotting & (statistical) data analysis after re-processing with EIRENE

Various extrapolation models for the far-SOL

- **d** L-mode pedestal, low density far-SOL (v_{\perp} = 35 m/s), low temperature far-SOL (T_e = 10 eV, Ti = 20 eV)
- H-mode pedestal, high density far-SOL (v_{\perp} = 100 m/s), high temperature far-SOL (T_e = 20 eV, T_i = 40 eV)
- **g** H-mode, $v_{\perp} = 35$ m/s, $T_e = 20$, $T_i = 40$ eV
- **m** H-mode, v_{\perp} = 100 m/s, T_{e} = 10, T_{i} = 20 eV

00	no near sol flow	Name —	Main SOL ^M II —	Far-SOL ^v ⊥ m s ^{−1}	Far-SOL T e eV	Far-Sol T_i eV
01	near sol flow 0.5M	00 <i>d</i>	0	30	10	20
		00g 00 k	0 0	30 65	20 20	40 40
		00 <i>m</i>	0	100	10	20
		0 1 <i>d</i>	0.5	30	10	20
Concentrate on case serie		01 <i>g</i>	0.5	30	20	40
2250)0*	01 <i>k</i>	0.5	65	20	40
2200		0 1 <i>m</i>	0.5	100	10	20

→ Semi-detached, high-power H-mode case

Collector surfaces (EIRENE tallies) for extended 2258 SOLPS4.3 geometry

Mitglied der Helmholtz-Gemeinschaft

27 November 2023

Page 4

2258_00g D⁰ energy spectra

Page 5

normalised "EIRENE-units" Amp/eV

27 November 2023

2258_00g D⁰ energy spectra

2258_00g D⁰ energy spectra

2258_00g D⁰ angular distribution (polar angle only, 2D-sym)

Expert's advice: don't tally wrong...

Mitglied der Helmholtz-Gemeinschaft

27 November 2023

Page 9

Comparison of far-SOL assumptions: D⁰ neutral pressure

Name —	Main SOL ^M III —	Far-SOL 𝒴⊥ m s ^{−1}	Far-SOL T _e eV	Far-Sol T_i eV
00g	0	30	20	40
00k	0	65	20	40
00m	0	100	10	20

Page 10

Comparison far-SOL assumptions: D⁰ spectra log-log (UL)

The "spx region peak" (CX) shifts and weighted average <E> depend on far-SOL Ti-conditions

Page 11

vember 2023

Comparison H-mode vs L-mode (00g)

- In L-mode the strong peak is less prominent
- However the average energy <E> is significantly higher than in H-mode (tail contribution)

Revised H-mode (L-mode) yield estimates (00g, UL)

	D on Be	D on W	Ne on W (*)
$Y(\langle E \rangle, \cos \alpha \equiv 1)$	0.025 (0.029)	0.0	0.00035
$\langle Y(E, \cos \alpha \equiv 1) \rangle$	0.015 (0.016)	0.0003 (0.0010)	0.00038
$\langle Y(E, \cos \alpha) \rangle$	0.031 (0.035)	0.0007 (0.0024)	0.00080

$$\langle Y(E, \cos \alpha) \rangle = \iint Y_{phys,93}^{EIRENE}(E, \cos \alpha) f(E, \cos \alpha) dE d \cos \alpha$$

(*) wrongly (!) assuming same spectra for Ne as for D, and $\Gamma_{\text{Ne0}} = 1\% \Gamma_{\text{D0}}$ \rightarrow Need real MC calculations for Ne!

Here: $f(E, \cos \alpha) = g(E) \cdot h(\cos \alpha)$

Roth, Bohdansky, Eckstein (SPUTER93):

$$Y_{phys,93} = Q_p \left(1 - a^{2/3} \right) (1 - a)^2 \frac{\frac{1}{2} \ln \left(1 + 1.2288b \right)}{b + 0.1728\sqrt{b} + 0.008b^{0.1504}}$$
$$Y_{phys,93}^{EIRENE} = Y_{phys,93} \cdot (\cos \theta)^{-f} \exp \left(fc - \frac{fc}{\cos \theta} \right)$$

$$a = \frac{E_{th}}{E}$$
, $b = \frac{E}{E_{tf}}$, $Q_p = const$

Yamamura-fit: f = 2, c = 0.26

EU-DEMO

Mitglied der Helmholtz-Gemeinschaft

Comments on spectral statistics

Shannon-Entropy

$$S = -\sum_{k} f_k \log f_k$$

MC histories	Wall-clock time (12 CPUs)	S(g(E))	$S(h(\cos \alpha))$
1.92e5	< 1min	2.409	2.409
1.92e6	7 min	4.097	4.143
1.92e7	71 min	5.926	5.792
1.92e8	12.5 hs	6.819	6.087
1.92e9	72 hs	7.083	6.134

OK, but Shannon-Entropy mixing invariant! Need a better figure-of-merit for statistical accuracy

Page 15

histories

particle

MC

.⊆

Increase

400

600 800

1000

1200

Towards optimised statistics and data compression

MaxEnt-regularised approach

Maximise

$$C = S + \sum_{l=1}^{L} \lambda_{l} (\int_{x_{0}}^{x_{1}} x^{l} \rho(x) \, \mathrm{d}x - \mu_{l}).$$

Requires calculation of higher moments in EIRENE

 \rightarrow mean l = 1 & variance l = 2 (both done)

to be implemented l > 2:

→ skewness, kurtosis, hyper-skewness, hypertailness, ... → recovers local/mixing structures

- If statistical fluctuations < evolving structures
 → stop the EIRENE run (implementation of a halt during run-time reqd.)
- Bonus: moment-representation possible for spectra, data-compression rate > 100 possible

Summary / Conclusion

- Neutral particle energy and angular distributions $f(E, \cos \alpha)$ collected on diagnostic surfaces for ITER reference SOLPS-ITER plasmas with manually extended grid up to FW (A. Khan et al)
- Result: detailed distributions give 2-3 larger D → W sputter yields (Y(E, cos α)) compared to standard estimates Y((E)), depends on far-SOL assumptions or H/L-mode, cos α-dependence gives a factor 2, H-mode: main contribution from tail of distribution
- Next Step: Ne \rightarrow W calculation, and compare relevance to D \rightarrow W
- SOLPS-ITER with wide-grid option should provide a better picture
- Also: JET post-processing with EIRENE on-going (M. Groth et al), DEMO (Wiesen, Brenzke FZJ)
- So far only uncorrelated energy and angular distributions collected

 → extension to multi-variate distribution functions possible f = f(E, cos(α))
 → requires longer EIRENE run-times for improved statistics and requires large memory
 → data compression through MaxEnt regularization
- Only polar angles are collected (toroidally symmetric)
 → extension to full 3D possible (e.g. post-processing EMC3 plasma-backgrounds)

Example: CX distributions from Steve Lisgo for ITER (case #1514)

- File name "i-cxd-0003-1514-00g.wall_energy_spectra" -> I guess that's not a standard EIRENE output...?
- Energy distributions at 12 locations, however no angular distributions.

j.romazanov@fz-juelich.de | 14.04.2021

Member of the Helmholtz Association

Modifications to the EIRENE code for angular distributions

- (Output/outspec)
- (Plotting/eirmod_plteir)
- Modules/eirmod_parmmod Modules/eirmod_cestim → introduction of ISPCOPT flag (for angular spectra)
- Scoring/update_spectrum
- Startup_routines/input.f
 Startup_routines/plasma.f
- Assistant/learca2
- Particle_tracing/folneut.f \rightarrow bugfix in case of transparent srfcs

