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Detachment physics & plasma-molecular interactions

Detachment is driven by atomic/molecular reactions 
through dependencies between power, particle and 

momentum balances
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Detachment requires:
• Power loss
• Momentum loss
• Particle loss (   ionisation and/or    ion sink)

Detachment (< ~ 5 eV) induced by chain of 
atomic and molecular reactions
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High molecular density can build up in detached 
conditions:

• Ionisation region detached from the target -> 
build-up of neutral atoms & molecules below

• As Te drops, molecular density rises strongly

Schematic illustration example
MAST-U Super-X divertor

Ionisation
Plasma-molecular interactions
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Plasma-molecular interactions impact power, particle 
and momentum balance:

• Collisions -> momentum & power dissipation, 
rovibrational excitation of molecules

• Plasma-chemistry: molecular ions formed -> react 
with the plasma -> Power, particle & momentum loss

Detachment requires:
• Power loss
• Momentum loss
• Particle loss (   ionisation and/or    ion sink)

Detachment (< ~ 5 eV) induced by chain of 
atomic and molecular reactions
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Plasma-molecular chemistry with molecular ions
Molecular ions can impact detached state and plasma diagnostics. Examples:

D2 + D+ -> D2
+ + D;    D2

+ + e- -> D + D* [Molecular Activated Recombination (MAR)]
D2 + D+ -> D2+ + D; D2+ + e- -> e- + D+ + D* [Molecular Activated Dissociation (MAD)]
e- + D2 -> D2- -> D- + D;     D- + D+ -> D + D* [MAR]

• Impacts particle balance (MAR)
• Provides additional dissociation chains (MAD) -> power losses, raises atom/molecule ratio, …. 
• Leads to excited (*) hydrogen atoms -> atomic line emission & radiation
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[Wünderlich, et al. Yacora, 2020]

Use Balmer lines to diagnose plasma-neutral interactions:

D* from ‘plasma-molecular reactions’ emission (PMR) ~ MAR / MAD
D* electron-impact excitation (EIE) emission ~ Ionisation
D* electron-ion recombination (EIR) emission ~ EIR

Deuterium Balmer 
spectrum
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Example – MAR/D on MAST-U
Detachment evolution:
• Ionisation detached from target, MAR appears downstream
• Peak MAR detaches & EIR appears near target (Te ≤ 0.2 eV), 

requiring new ADAS EIR PECs [see presentation M. O’Mullane]
• MAR remains significant even at strong EIR (Te ≤ 0.2 eV) 

Divertor ion source remains in place 
-> stability to fueling/heating 

Total ion sinks (MAR          ) increase

MAR significant before Electron-Ion Recombination (EIR) 
and remains dominant

[Verhaegh, 2023, ArXiV, 2311.08580 ]

Ionisation
Electron-Ion Recombination (EIR)
Molecular Activated Recombination (MAR)
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67% increase 
in density

MAD is the dominant dissociation mechanism! 

-> Can lead to significant divertor power dissipation (10-
20% of power into divertor)



Example – MAR/D on MAST-U
Integrate divertor ion sources & sinks for total divertor particle balance

• Strong MAR ion sinks, such that ion sources & sinks balance in divertor chamber throughout

• EIR at high nGW, but MAR remains dominant

• Dominance of MAR also observed in less strongly
shaped divertor scenarios

MAR ion sinks dominant detachment mechanism 
in MAST Upgrade divertor

upstream 
source

Particle balance
Target flux = tot. source – MAR – EIR
tot. source = div. + upstream source

Kevin Verhaegh | 29-11-2023 | IAEA TM H2 & W CRM  | Introduction | Page 4/17

[Verhaegh, 2023, ArXiV, 2311.08580 ]



Intermezzo: D2 Fulcher band spectroscopy
• Balmer lines D* -> information during detached conditions, however no direct information about D2
ØD2 Fulcher emission can provide direct information about D2, however little electronic excitation during 

detached conditions -> strong MAR & MAD hard to diagnose with D2 Fulcher emission 

ØHowever, lack of D2 Fulcher emission can be used as a diagnostic !

• D2 Fulcher emission intensity correlated with ionisation region (energies required for electron-impact 
excitation of D and D2 similar) [K. Verhaegh, et al. 2023, Nucl. Fusion 63 016014]

• 50% below Fulcher peak -> use as proxy for the ionisation front -> detachment analysis & real-time control

Example – density ramp discharge
• D2 Fulcher (600-605 nm) recedes 

further during deeper detachment

• Balmer emission beneath D2 Fulcher 
-> MAR & MAD

Multi-wavelength imaging diagnostic
[T. Wijkamp, et al. 2023, Nucl. Fusion]
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Intermezzo: D2 Fulcher band spectroscopy
D2 Fulcher band study (N. Osborne):
• Rotational distribution consistent with Boltzmann. MAST-U: high Trot (4000-8000 K) at low ne (2.1019 m-3)
• Rotational temperature increases during deeper detachment and decreases at deepest detachment
• Molecules can survive longer in a detached plasma, which may explain Trot

[N. Osborne, et al. 2023, arxiv]
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Intermezzo: D2 Fulcher band spectroscopy
D2 Fulcher band study (N. Osborne):
• Rotational distribution consistent with Boltzmann distribution 
• Rotational temperature increases during deeper detachment
• Molecules can survive longer in a detached plasma -> high Trot ?
• Comparison MAST-U & TCV at different shapes/fueling/baffling 

ongoing –> suggest Trot mostly depends on detached state

• Vibrational distribution inconsistent with Boltzmann distribution 
• Overpopulation v=3 increases during deeper detachment
• Inconsistent with most CR models ?

• D2 Fulcher spectra MAST-U qualitatively similar to JET (E. Pawalec)

[N. Osborne, et al. 2023, arxiv]
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Example – no MAR in interpretive simulations (TCV)

[K. Verhaegh, et al. 2021, NF]

TCV tokamak - #56567 – L-mode, Ohmic, 340 kA, single null conventional non-baffled, 2016-2018

MAR: D2 + D+ -> D2
+ + D; D2

+ + e- -> D* + D

SOLPS-ITER: [A. Fil, et al. 2018, CPP]

Detachment onset

PMR 𝑫𝜶

Experiment & simulation disagree 
on plasma-mol. interactions:

1. No MAR simulation
2. Negligible PMR 𝑫𝜶 simulation 
3. No ion flux roll-over simulation

TCV 

Why does MAR not appear in 
simulations, in contrast to 

experiments ?
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Plasma-molecular interactions in exhaust simulations



Plasma-molecular interactions in Eirene
Effective rates – use 0D CRM to compute hydrogen rates (ne and Te), stored as tabled fits (AMJUEL)
< 𝝈𝒗 >𝒆𝒇𝒇 𝒏𝒆, 𝑻𝒆 = 𝚺𝝂 𝐟𝝂 𝐓 < 𝝈𝒗 >𝝂 (𝑻, 𝒏𝒆)
• Vibrational ( 𝒇𝝂 𝑻 ) and electronic resolved model decoupled: electronic excitation not considered for 𝒇𝝂 𝑻

Vibrational model ( 𝐟𝝂 𝐓 ) – ‘H2VIBR’:
v Vibrational excitation through electron impact: v=0 (Bardsley Wahedra 1979) rescaled to higher v
v Ion conversion* v=0 (Holiday, 1971) rescaled to higher v
v Electron-impact dissociation v=0 through b3S (Janev, 1987) rescaled to higher v
• Electron attachment v=0 (Bardsley, Wahedra, 1979) rescaled to higher v
• Molecular ionisation Gryzinski method

v= Rescaled by scalar Av : < 𝝈𝒗 >𝝂 𝑻 = 𝑨𝝂 < 𝝈𝒗 >𝝂$𝟎 (𝑻) – difference in threshold energy neglected

* Depends on ion velocity, but Eirene cannot account for this and assumes Ti = Te, leading to erroneous mass 
rescaling: 

Vibrational model heavily outdated and not self-
consistent with effective rates
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Plasma-molecular interactions in Eirene
Effective rates – use 0D CRM to compute hydrogen rates (ne and Te), stored as tabled fits (AMJUEL)
< 𝝈𝒗 >𝒆𝒇𝒇 𝒏𝒆, 𝑻𝒆 = 𝚺𝝂 𝐟𝝂 𝐓 < 𝝈𝒗 >𝝂 (𝑻, 𝒏𝒆)
• Vibrational ( 𝒇𝝂 𝑻 ) and electronic resolved model decoupled:

Effective rates (vibr. resolved) - use a collisional-radiative model to compute hydrogen rates as function of ne and Te

• Electron-impact dissociation e- + H2 -> e- + H + H Sawada
• Molecular Activated Ionisation e- + H2 -> 2e- + H+ + H Sawada
• Molecular ionisation e- + H2 -> 2e- + H2

+ Sawada
• Ion conversion H+ + H2 -> H2

+ + H Same as vibr. resolved setup
• Dissociative recombination/excitation/ionisation of H2

+ e- + H2
+ -> … Sawada

Sawada: only electronically resolved for vibrational ground. Analytic rescaling used:
< 𝜎𝑣 >&

'()*,),, 𝑛), 𝑇) = A- < 𝜎𝑣 >-$.
'()*,),, (𝑇, 𝑛))

Ø v dependence of dissociation energy threshold ignored (!)

Decoupling vibrational and electronic resolved model
may lead to uncertainties in dissociation rates

Note: H- not included by default
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Discussion: disconnection AMOL & 
fusion community? How to improve?



Discussion points – molecular treatment in exhaust codes
1. Revision molecular rate setup required for exhaust simulations ?
• Self-consistent vibrationally & electronically resolved setups
• Coupling of vibrational & electronic states – are vibrationally resolved electronic states required ?
• Analytic scalings -> introduce large uncertainties; use ab initio cross-sections instead ?
• Improved provenance – initialise effective rates at the start of a simulation through built in CRM ?
• Isotope resolved rates required ?

2. Are additional processes & species required ?
• D2+ recombination ? [Wunderlich, et al.]
• Should D- be considered ?

3. Is a 0D CR approach with effective rates (ne, Te)  appropriate for exhaust simulations ?
• Transport of D2 (v) -> deviates from 0D transport-less model
• Plasma-surface interactions -> changes D2 (v) and requires tracking D2 (v)
• Use robust mathematics approach (Greenland, et al.) to compute which states need to be tracked ?
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Scoping study : investigate impact of improved data (1.) 
& additional processes (D-) (2.)

Ø Inaccuracy molecular charge exchange biggest impact !
- re-derivation of the molecular charge exchange rate

Ø D- may contribute to MAR & MAD (but data inconclusive)



Uncertainties in the molecular CX rate
Eirene – default molecular CX cross-sections

• Based on measurements for vibrational ground 
state (Janev 1987, Holliday 1971)
• Analytic Greenland 2001 scaling from ground -> 

higher vibrational levels (𝐴- 𝜈 )

• Cross-sections in vibrational ground drop 
dramatically at Ti < 1.5 eV
• Therefore, all vibrationally resolved cross-sections 

drop dramatically at Ti < 1.5 eV (default Eirene 
rates)

< 𝜎𝑣 >!
"! #$ (𝑇% , … ) = 𝐴! 𝜈 < 𝜎𝑣 >!&' (𝑇% , … )

Disagrees with vibrationally resolved cross-section 
calculations [Ichihara, 2000], which show Ti

insensitivity at high v (which drive most mol. CX)

Eirene vibrationally resolved cross-sections are 
underestimated at low T

Janev 1987 / Holliday 1971 
/ Greenland

Ichihara, 2000

v

0

14

4

Kevin Verhaegh | 29-11-2023 | IAEA TM H2 & W CRM  | Molecular CX | Page 9/17



Rate scoping study
Use CRUMPET [A. Holm, et al.] (open source, easy to use Python package, provenance) to: 
1) rebuild vibr. Resolved CRM used by Eirene
2) check impact of different reactions (including coupling electronic & vibrational states)

• Vibrational excitation through electron impact Laporta (ab. Initio) D
• Ion conversion Ichihara (ab initio), 2002 H
• Electron-impact dissociation MCCDB (ab initio), Scarlett D
• Electron attachment Laporta (ab initio) D
• Molecular ionisation MCCDB (ab initio), Scarlett D
• Electronic excitation MCCDB (ab initio), Scarlett D
• Radiative decay of electronic states Fantz D
• Interactions with H2+ & H- Keep same as Eirene H

No coupling between D2 and D model, may impact 
separation D2 ionization & dissociation [Sawada]

See talks Scarlett, Laporta
Courtesy of S. Kobussen, MSc. Internship project, 
2023, arxiv:2311.16732 Kevin Verhaegh | 29-11-2023 | IAEA TM H2 & W CRM  | Rate scoping study | Page 10a/17



Rate scoping study
Use CRUMPET [A. Holm, et al.] 
1) rebuild vibr. Resolved CRM used by Eirene 
2) check impact of different reactions

• Vibrational excitation through electron impact Laporta (ab. Initio) D
• Ion conversion Ichihara (ab initio), 2002
• Electron-impact dissociation MCCDB (ab initio), Scarlett D
• Electron attachment Laporta (ab initio) D
• Molecular ionisation MCCDB (ab initio), Scarlett D
• Electronic excitation MCCDB (ab initio), Scarlett D
• Radiative decay of electronic states Fantz D
• Interactions with H2+ & H- Keep same as Eirene H

No coupling between D2 and D model, 
which can be important [Sawada]

See talks Scarlett, Laporta

ne = 5. 1019 m-3Detached – strong plasma-
mol. interactions
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• Different ion conversion rate has the biggest impact
• Electron-impact dissociation increased in low Te region
• D- can play lead to MAR & MAD (20% of D2+ driven MAR/MAD)
• Consistent with experimental data MAST-U & TCV [Verhaegh, et al. 

NF, 2021; Verhaegh, et al. ArXiV 2311.08580], but inconclusive



Rate scoping study
Use CRUMPET [A. Holm, et al.] 
1) rebuild vibr. Resolved CRM used by Eirene 
2) check impact of different reactions

• Vibrational excitation through electron impact Laporta (ab. Initio) D
• Ion conversion Ichihara (ab initio), 2002
• Electron-impact dissociation MCCDB (ab initio), Scarlett D
• Electron attachment Laporta (ab initio) D
• Molecular ionisation MCCDB (ab initio), Scarlett D
• Electronic excitation MCCDB (ab initio), Scarlett D
• Radiative decay of electronic states Fantz D
• Interactions with H2+ & H- Keep same as Eirene H

No coupling between D2 and D model, 
which can be important [Sawada]

See talks Scarlett, Laporta

• MAR & MAD enhanced by orders of magnitude in low Te region
• Electron-impact dissociation increased in low Te region

ne = 5. 1019 m-3Detached – strong plasma-
mol. interactions
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Rate scoping study
Toy model: Use scalings for increase D2 density
as function of Te (SOLPS – MAST-U) 
• Molecular density increase at low Te exacerbates

discrepancies
• Simplified toy model: MAR > EIR up to Te=0.25 eV

(MAST-U conditions, ne = 5 . 1019 m-3)

• Extrapolating to higher ne (1021 m-3) 
-> MAR & MAD still important up to 0.5 eV

• MAR important at low Te with new rates 
in agreement with experiment

• MAR & MAD enhanced by orders of magnitude in low Te region
• Electron-impact dissociation increased in low Te region
• Increase of molecular density at low Te boosts MAR & MAD
• Improved rates in better agreement with MAST-U behaviour

ne = 5. 1019 m-3Detached – strong plasma-
mol. interactions

Detached plasma -> molecular 
density increases at low Te
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Can molecular charge exchange rate inaccuracies impact exhaust simulations ?

1. Rate modifications can impact simulations & improve agreement experiment
2. Rate modifications can matter on the reactor scale for tightly baffled divertors 

with alternative divertor configurations

Ø Rate improvements required for reducing uncertainties in extrapolating 
current knowledge to reactors



Molecular rate modifications & exhaust modelling
Eirene D+ + D2 -> D2

+ + D rate (see details [K. Verhaegh, 2023, NF, 076015])

• Incorrect rescaling vibrationally resolved rates -> underestimated @ T < 1.5 eV 
• Account for lower velocity ion of heavier isotopes -> exacerbates underestimation for D, T 

Collisional-radiative modelling 
• D2(v) model with vibr. Resolved ab initio 

mol. CX rates [A. Ichihara, 2000, JPhysB]

• Keep all other interactions the same as Eirene

Eirene (D -> T/2)

Eirene, H

Ichihara, CRM

Ichihara, CRM

Eirene (D -> T/2)
Eirene, H

Underestimation of molecular CX expected at Te < 2 eV 
-> MAR underestimated in detachment

‘Tip of the iceberg’: many inaccuracies plasma-
molecular interactions in Eirene

Courtesy of S. Kobussen, MSc. Internship project, 
2023, arxiv:2311.16732 
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Molecular rate modifications & exhaust modelling
Eirene D+ + D2 -> D2

+ + D rate (see details [K. Verhaegh, 2023, NF, 076015])

• Incorrect rescaling vibrationally resolved rates -> underestimated @ T < 1.5 eV 
• Account for lower velocity ion of heavier isotopes -> exacerbates underestimation for D, T 

Collisional-radiative modelling 
• D2(v) model with vibr. Resolved ab initio 

mol. CX rates [A. Ichihara, 2000, JPhysB]

• Keep all other interactions the same as Eirene

Eirene (D -> T/2)

Eirene, H

Ichihara, CRM

Ichihara, CRM

Eirene (D -> T/2)
Eirene, H

Underestimation of molecular CX expected at Te < 2 eV 
-> MAR underestimated in detachment

1. Sensitivity study TCV tokamak: disable mass 
rescaling [K. Verhaegh, 2023, NF, 076015]

2. Post-process converged reactor-scale simulations
with

3. Self-consistent simulations with 
on MAST-U in progress

Eirene, H 1
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Ichihara, CRM

2,
3

Ichihara, CRM



TCV tokamak - #56567 – single null conventional non-baffled, 2016-2018

Disable ion mass rescaling TCV

MAR: D2 + D+ -> D2
+ + D; D2

+ + e- -> D* + D

PMR 𝑫𝜶

PMR 𝑫𝜶

TCV 
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TCV tokamak - #56567 – single null conventional non-baffled, 2016-2018

Disable ion mass rescaling TCV

MAR: D2 + D+ -> D2
+ + D; D2

+ + e- -> D* + D

PMR 𝑫𝜶

PMR 𝑫𝜶

Agreement SOLPS-ITER and experiment strongly improved 
(significant MAR, Dα emission from D2

+ and ion target flux 
roll-over) with modified D2 + D+ -> D2

+ + D rate

New experiments TCV: 

Hydrogen vs deuterium comparison
-> initial analysis suggests similar amounts of MAR & MAD 
present in disagreement with Eirene rates, in agreement

with modified rates

TCV 

[K. Verhaegh, 2023, NF, 076015]
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Reactor-relevant simulations for STEP (see [R. Osawa, 2023, NF; A. Hudoba, 2023, NME])

• Tightly baffled double null Alternative Divertor (Elongated / X-Divertor - outer / inner target)
• PSOL ~ 80 MW, D fuelled, Ar seeding

Post-process:

Role plasma-mol. interactions in reactors

Ichihara, CRMSOLPS-ITER 
simulation result

D2
+ changes 𝑫𝜶, MAR, MAD changes …

(assuming ne, Te, … remains constant)

Post-processing cannot 
account for changes in the 

plasma solution

Particle balance before post-processing

Simulation grid with 𝑫𝜶 emission (post-processed)

Simulation near 
detachment onset
(ionisation near target)

[K. Verhaegh, 2023, ArXiV:2311.08580]
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Reactor-relevant simulations for STEP (see [R. Osawa, 2023, NF; A. Hudoba, 2023, NME])

• Tightly baffled double null Alternative Divertor (Elongated / X-Divertor - outer / inner target)
• PSOL ~ 80 MW, D fuelled, Ar seeding

Post-process:

• MAR > EIR ion sinks (despite ne ~ 1021 m-3)
• MAR > inner target ion flux

• MAD -> power losses (> 10% of PSOL) & dissociation (x2-x8) 

Role plasma-mol. interactions in reactors

Plasma-chemistry can play a role at the reactor scale !

New simulations with improved rates required to 
investigate full impact

Ichihara, CRMSOLPS-ITER 
simulation result

D2
+ changes 𝑫𝜶, MAR, MAD changes …

(assuming ne, Te, … remains constant)

Particle balance after post-processing
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3. Is a 0D CR approach with effective rates (ne, Te) appropriate for 
exhaust simulations ?

• Potential impact of transport of D2 (v) on MAR/MAD ?
• Potential impact of plasma-surface interactions on MAR/MAD ?



Potential impact of transport of D2 (v)

Kevin Verhaegh | CCFE Divertor Spectroscopy Meeting | 18-03-2016 | Page

Transport of D2 (v) is likely if the transport 
timescale is the shortest: 𝝉𝒕 < 𝝉𝒆𝒒, 𝝉𝒓

Timescales of D2 (v)
• Equilibration time 𝜏)2 (increases for detached plasmas)
• Transport 𝜏3  (constant – for constant D2 temperature – assume 0.5 eV & 10 cm)
• Lifetime 𝜏4  (increases for detached plasmas)

D(v) transport can be significant on MAST-U
and may be non-negligible in reactors at

detachment-relevant conditions
𝝉𝒕 < 𝝉𝒆𝒒, 𝝉𝒓

Courtesy of S. Kobussen, MSc. Internship project, 
2023, arxiv:2311.16732 
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Potential impact of transport of D2 (v) on MAR & MAD
Timescales of D2 (v)
• Equilibration time 𝜏)2 
• Transport 𝜏3  
• Lifetime 𝜏4  

Toy model to for impact on MAR & MAD
• Molecule equilibrated @ 6 eV, travels 𝜏3 through an Tf eV 

region, how much will this raise D2 + D+ -> D2+ + D rate ? 

D(v) transport can be significant on MAST-U
at detachment-relevant conditions

Can raise D2+ MAR & MAD by x100
Can raise D- MAR & MAD by x10000

0.5 eV & 5 cm: 𝝉𝒕=10-5 s 

Transport of D2 (v) is likely if 
the transport timescale is the 
shortest: 𝝉𝒕 < 𝝉𝒆𝒒, 𝝉𝒓

Courtesy of S. Kobussen, MSc. Internship project, 
2023, arxiv:2311.16732 
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Potential impact of transport of D2 (v) on MAR & MAD
Timescales of D2 (v)
• Equilibration time 𝜏)2 
• Transport 𝜏3  
• Lifetime 𝜏4  

Toy model to for impact on MAR & MAD
• Molecule equilibrated @ 6 eV, travels 𝜏3 through an Tf eV 

region, how much will this raise D2 + D+ -> D2+ + D rate ? 

Te (eV) Ne (m-3)

6 1019 

1.5 1020

0.5 1021

D(v) transport can be significant on MAST-U
at detachment-relevant conditions, which 

may also occur at reactor-relevant ne

Can raise D2+ MAR & MAD by x100
Can raise D- MAR & MAD by x10000

0.5 eV & 5 cm: 𝝉𝒕=10-5 s 

Transport of D2 (v) is likely if 
the transport timescale is the 
shortest: 𝝉𝒕 < 𝝉𝒆𝒒, 𝝉𝒓

Courtesy of S. Kobussen, MSc. Internship project, 
2023, arxiv:2311.16732 
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Potential impact of surface interactions on MAR/D

Plasma surface interactions could further 
raise MAR near target in the detached region

D2 (v) from Rugliano, et al. 2011
Assumes D2 influx from re-association on the 
wall on Tungsten through Elay-Rideal process

Similar results found by Saito, et al. based 
on molecular dynamics modelling

Probability functions for D2(v) released from the wall, -> toy model potential 
impact plasma-surface interactions
• Plasma surface interactions -> source of high vibrational D2(v)
• Introduce additional source into CRM
ØRaises vibrational levels D2(v) overall 

-> can increase molecular charge exchange -> MAR

Courtesy of S. Kobussen, MSc. Internship project, 
2023, arxiv:2311.16732 
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Conclusion

1. Boosts D* emission -> complications diagnostic interpretation & control sensing capabilities
2. Drives dissociation (MAD) -> increases volumetric atom generation & associated power loss (20% of PSOL)
3. Ion sinks (MAR) -> induces particle flux reduction at higher Te than EIR
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Schematic illustration example
MAST-U Super-X divertor

Ionisation
Plasma-molecular interactions

Particularly relevant for strongly 
baffled & long-legged divertors - > 

can extend to reactor scale

Plasma-molecular chemistry, not well reproduced in 
simulations -> improved rates required, 
particularly molecular charge exchange  

Impact of different rates can be far-reaching:
1. Power exhaust physics: D/D2 balance; changes 

detachment window; fuelling efficiency; …..
2. Diagnostic analysis & design – including 

detachment control sensor strategies

Plasma-molecular interactions can be important during detachment, even on the reactor scale, and are not 
well reproduced by exhaust codes



Discussion points – molecular treatment in exhaust codes
1. Revision molecular rate setup required for exhaust simulations ?
• Self-consistent vibrationally & electronically resolved setups
• Coupling of vibrational & electronic states – are vibrationally resolved electronic states required ?
• Analytic scalings -> introduce large uncertainties; use ab initio cross-sections instead ?
• Improved provenance – initialise effective rates at the start of a simulation through built in CRM ?
• Isotope resolved rates required ?

2. Are additional processes & species required ?
• D2+ recombination ? [Wunderlich, et al.]
• Should D- be considered ?

3. Is a 0D CR approach with effective rates (ne, Te)  appropriate for exhaust simulations ?
• Transport of D2 (v) -> deviates from 0D transport-less model
• Plasma-surface interactions -> changes D2 (v) and requires tracking D2 (v)
• Use robust mathematics approach (Greenland, et al.) to compute which states need to be tracked ?
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