INSTITUTE OF PLASMA PHYSICS OF THE CZECH ACADEMY OF SCIENCES

Atomic data needs for studying of W sputtering in a high-density divertor plasmas

D. Tskhakaya

Institute of Plasma Physics of the CAS, Prague, Czech Republic

> Introduction

- Analytic desription of the W prompt re-deposition
- > PIC simulation results
- Identification of atomic data needs
- Conclusions

Statement of the problem

W ions penetrate into the core plasma leading to its significant cooling.

Critical W concentration C_{w cr.}~3x10⁻⁵ [1]

W outflux

$$F_{W} = \left(1 - f_{prompt}\right) \left(R_{p}F_{p} + R_{n}F_{n} + \sum_{i}R_{i}F_{i}\right)$$

Prompt re-deposition coefficient (at the divertors) [2]

 $f_{prompt} > 0.9$

[1] T. Pütterich, et al., Nucl. Fusion, 50 (2010)[2] D. Tskhakaya, et al., J. Nuc. Mat., 463 (2015)

W prompt re-deposition (classical models)

IAEA Tec meeting 28.11-01.12.23

PIC simulation of W sputtering

IAEA Tec meeting 28.11-01.12.23

W sputtering yields and rate coefficients

W. Eckstein, Vacuum, 82 (2008)

COMPASS

W sputtering yields vs ion energy

Negligibly small W-sputtering rates due to the main and He ions

$$R_{W}(T) = \int_{0}^{\infty} \gamma_{W} \left(Z_{i} \varphi T + E_{\perp} + E_{\parallel} \right) f_{i} \left(E_{\parallel}, E_{\perp} \right) dE_{\perp} dE_{\parallel}$$

W sputtering rate coefficients vs plasma temperature

W sputtering rates for impurity ions

IAEA Lec meeting 28.11-01.12.23 Iskhakaya

COMPASS INSTITUTE OF PLASMA PHYSICS ASCR

Effective W sputtering rate coefficients

He, Ar?

	Gross [10 ²¹ m ⁻² s ⁻¹]	Nett [10 ²¹ m ⁻² s ⁻¹]
ID	6.21	1.00 (~16%)
OD	17.03	0.64 (~4%)

	Gross [10 ²¹ m ⁻² s ⁻¹]	Nett [10 ²¹ m ⁻² s ⁻¹]
ID	0	0
OD	0.015	0.015

:: IPP

COMPASS INSTITUTE OF PLASMA PHYSICS ASCR

Other channels of prompt re-deposition

$$D^{+} \bigoplus D^{+} + W \rightarrow D + W^{+}$$

Simulated plasma	W re-deposited fraction	CX collisions
High density	0.1%	σ_{CX} =10 ⁻¹⁹ m ²
High density	30%	σ_{cx} =5x10 ⁻¹⁹ m ²

Needs for atomic data

Charge-exchange CS or rates

 $D^{+} + W^{(v)} \rightarrow D + W^{+}$ $T^{+} + W^{(v)} \rightarrow T + W^{+}$

Effective ionization rates

 $e + W \rightarrow e + W^{(v)} \dots \rightarrow 2e + W^+$

Normalized rates of e + Ne ionization collisions for different plasma density [https://open.adas.ac.uk]

- > Our study indicates that with decreasing plasma temperature the **prompt re-deposition** (f_{prompt}) **decreases faster than the gross sputtering rate**, (R_{gr}) ; as a result, the net sputtering rate, $R_{net} = (1 - f_{prompt})R_{gr}$, can be still significant. This might have **significant consciences** for future generation fusion devices like ITER and DEMO.
- The above given results were obtained under the coronal approximation and neglecting the main ion + W charge exchange collisions. The first tests with charge exchange channel show rapid increase of the prompt re-deposition and consequently, decrease of the net W sputtering, with (artificially) increasing the corresponding cross-section
- In order to study this process a new atomic data is needed: effective H⁺, W charge exchange and e + W multy step ionization rate coefficients (or cross-sections)

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

