ITER Spectroscopic Diagnostics and Atomic Data Needs

Zhifeng CHENG ITER Organization

28 Nov, 2023, Vienna

china eu india japan korea russia usa

THE ITER MISSION

To demonstrate the scientific and technological feasibility of fusion power for peaceful purposes at industrial scale

To create a controlled "burning" plasma

To achieve $Q \ge 10$

Overall diagnostics situation

ITER has **26 diagnostic ports** which house about **50 diagnostic systems**.

They are procured through **7 different DAs** (CN, EU, IN, JA, KO, RF and US) and by the **ITER Organization**.

~1/3 are spectroscopic diagnostics:

H-alpha and Visible Spectroscopy

- Visible: Divertor Impurity Monitor Visible Spectroscopy Reference System Vacuum UltraViolet Survey (VUV Survey)
- VUV:Vacuum UltraViolet Div (VUV Div)
Vacuum UltraViolet Edge (VUV Edge
X-Ray Crystal Spectroscopy Core (XRCS Core)
X-Ray Crystal Spectroscopy Survey (XRCS Survey)
X-Ray Crystal Spectroscopy Edge (XRCS Edge)
Hard X-Ray MonitorChargeCharge Exchange Recombination Spectroscopy Edge
Charge Exchange Recombination Spectroscopy Edge
- **Exchange:** Charge Exchange Recombination Spectroscopy Edge

Overview of Diagnostic (port plugs highlighted)

3

Overall diagnostic situation

Measurements for Spectroscopic Diagnostics ITER is being proposed for <u>FULL TUNGSTEN</u> first wall with boronization

- Measurement Parameter 007-009. Prad
- Measurement Parameter 018. Vpol
- Measurement Parameter 019. Vtor
- Measurement Parameter 020. <u>nT/nD</u> in Plasma Core
- Measurement Parameter 021. ligh impurities Influx
- Measurement Parameter 022. ligh impurities Relative Concentration
- Measurement Parameter 027. W Influx
- Measurement Parameter 028. <u>W Relative Concentration</u>
- Measurement Parameter 029. Line-averaged Zeff
- Measurement Parameter 030. ELM radiation bursts
- Measurement Parameter 032. ELM Temperature Transient
- Measurement Parameter 033. <u>L-H D-alpha</u> Step
- Measurement Parameter 064. Core Ti
- Measurement Parameter 065. Edge Ti
- Measurement Parameter 073. Fractional Content Z>10
- Measurement Parameter 074. Fractional Content Z≤10
- Measurement Parameter 076. <u>nT / nD</u> Edge
- Measurement Parameter 078. Be, C, <u>W influx in divertor</u>
- Measurement Parameter 088. <u>nH / nD</u> Divertor
- Measurement Parameter 094. <u>nH / nD</u> Core
- Measurement Parameter 095. <u>D /T Influx</u> in Chamber

New requirement: B is coming while Be will be removed

Measurement Requirements

Diagnostic Spectral Ranges

- H-alpha and Visible spectroscopy: 450-700 nm, dedicated channel for H-alpha 656 nm line and for W0 400.9 nm line
- Divertor Impurity Monitor: 200 1000 nm, dedicated channel for the W0 400.9 nm line
- VUV Survey: 2.4 160 nm range, (W⁴⁶⁺ 19.6 nm and W⁴⁴⁺ 132.3 nm)
- VUV Edge: 17 32 nm
- VUV Divertor: 15 32 nm
- XRCS Survey: 1-100 Å
- XRCS Core: ~1.354 Å (W⁶⁴⁺), 2.1899 Å (Xe⁵¹⁺), and 2.555 Å (Xe⁴⁴⁺ and Xe⁴⁷⁺)
- XRCS Edge: ~3.95 Å (Ar¹⁶⁺) and ~3.73 Å (Ar¹⁷⁺)

Challenges for ITER Diagnostics

New solutions had to be found in response to the **numerous challenges** posed by ITER to the design of the diagnostic systems

- Constrained space with little accessibility
- Safety concerns
- Harsh radioctive environment

2nd IAEA Technical Meeting on the Collisional-Radiative Properties of Tungsten and Hydrogen in Edge Plasma of Fusion Devices, Nov 28 - Dec 1, 2023

ITER XRCS Core

Diagnostic examples

iter

Roles of atomic data for ITER diagnostics

- Influence diagnostic design
 - Line wavelengths for optimizing diagnostic configuration

Possibility of spectral contamination from W lines?

- Synthetic diagnostic development: Impurity emission modelling
- Critical for data processing and interpretation
 - Branching ratio data for cross check among diagnostics
 - S/XB ratio for impurities concentrations
 - Impurity transport model: Impurity emission modelling
 - CX data for evaluating active spectra

Filter Spectroscopy in visible

9

Measurements dependance on atomic process

- Synthetic diagnostic used to generate signals (Emissivity profiles from ADAS)
- Electron temperature determines measurement accessibility for ion temperature
- Uncertainties about W line contamination of the Xe spectra used for the measurement

Needs for Diagnostics

- Improvement of accuracy of ionization, recombination, radiation, and CX rates, now particularly including also boron.
 - CX cross sections (for H⁺, He²⁺, B⁵⁺, C⁶⁺, Ne¹⁰⁺, Ar¹⁸⁺) and thermal cross sections for the same impurities ions
 - ADAS update?
- Improved S/XB ratio accuracies for all spectral lines of interest
 - Critical to estimate W plasma concentration from photon emission rates
 - Need to cover range from W⁰ to at least W⁶⁴⁺
- Modelling to provide synthetic data to support diagnostic and control system design
 - Detailed full Spectra (including H, W, B, Fe, Ne, N, O, Ar) for typical ITER plasma
 - Passive and active spectra for B⁴⁺

Concerns on ITER operation

Impacts of W first wall plasma facing components for demonstration of Q = 10

Operation with W first wall

- Limiter operation with W first wall PFCs
- W wall source in diverted operation
- Transport of W from the wall to the separatrix
- Transport of W from the separatrix into the core plasma through the pedestal
- Transport of W in the core H-mode plasma

Boronization process in ITER

- Atomic and molecule process with Boron including Diborane
- Formation of B deposits on W surface
- Fuel retention in B layers
- Erosion and lifetime of B layers
- Transport and migration of B deposits

Use of Atomic data for ITER operation

For plasma modelling

- Plasma models often require electron cooling rates for energy balance and total ionization/recombination rates for particle balance
 - Ionization/recombination rates of low Argon charge states were recently identified as needing a critical overhaul (ongoing work)
- Charge state bundling methods used to reduce the number of species to follow

• For materials modelling, including fuel retention issues:

- Nature of hydrogen/helium traps in bulk W
- Vacancy formation and diffusion rates
- Blistering, cracking, fatigue, grain boundaries
- IR emissivity, melting, evaporation

Needs for Operation

- Refinement of particle reflection data at low energies
 - Dependencies on W surface state, incident angle, incident hydrogen isotope, ...
- Dissociation, excitation of WD and other molecules
- B deposition and sputtering
- Reliable charge distribution to deduce upstream W migration and core penetration
- Detailed sputtering yields
 - As functions of temperature, surface roughness, other impurities present...
- Fast and reliable prompt redeposition model
- Tokamak experiments on boronization effect, B W interaction, W transport...

14

Diagnostician Focuses

- Update of diagnostic configuration with full tungsten first wall
 - Full synthetic spectra (B and W) in visible range for polychromators
 - Detailed W spectra at specific X-ray ranges: 2.15 2.25 Å (Xe⁵¹⁺), 2.5 2.6 Å (Xe⁴⁴⁺ and Xe⁴⁷⁺), 3.85 4.05 Å (Ar¹⁶⁺), 3.65 3.85 Å (Ar¹⁷⁺)
- Calibration of spectroscopic diagnostics
 - Spectra with strong lines (W, Xe, Fe, Ar, Ne, B, O, C) from 0.1 nm to 1000 nm for wavelength calibration of Visible, VUV and X-ray Spectroscopies.
 - Lines data for relative intensity calibration: Usable ions, wavelength pairs, branching ratios
 - Continuum spectral distribution for absolute calibration with combination of Bremsstrahlung and Recombination radiation
 zhifeng.cheng@iter.org

Acknowledgments

Contributions from IO Diag.: Maarten De Bock, Roger Reichle, Raphael Tieulent, Michael Walsh IO SCOD: Xavier Bonnin, Alberto Loarte, Simon Pinches, Richard Pitts, Yanjie Zhang External: Robin Barnsley (IO retired), Martin O'Mullane (University of Strathclyde)

Disclaimer: The views and opinions expressed here do not necessarily reflect those of the ITER Organization.

Thank you!

china eu india japan korea russia usa

Divertor Impurity Monitor

Visible Spectroscopy Reference System

Backup

XRCS Survey, VUV Survey and Divertor

