Global tungsten erosion and impurity migration modeling for the DEMO with the ERO2.0 code

IAEA Technical Meeting on Tungsten and Hydrogen in Edge Plasmas

November 30th 2023

<u>Christoph Baumann</u>, J. Romazanov, S. Rode, D. Matveev, A. Kirschner, S. Wiesen, F. Subba, S. Brezinsek, and Ch. Linsmeier

Plasma-facing materials in fusion devices

Tungsten as a prominent candidate

- high melting point
- low sputtering yield due to large mass
- large probability of prompt re-deposition due to generally short ionization mean free paths

- stability of core plasma requires low W concentration of $< 10^{-5}$
- dedicated modelling required in particular for future full-W devices such as ITER and DEMO

c.baumann@fz-juelich.de

Simulation code ERO2.0

3D Monte-Carlo tool for PWI and global impurity migration studies

[1] A. Kirschner et al., Nuclear Fusion 40, 989 (2000)
[2] J. Romazanov et al., Physica Scripta T170, 014018 (2017)

plasma-wall interaction (PWI):

- physical sputtering/reflection
- (re-)erosion and (re-)deposition
- material mixing

impurity transport:

- Lorentz force (including E x B)
- ionization, recombination
- friction (Fokker-Planck), thermal force
- cross-field diffusion

Tungsten data related to ERO2.0 modelling

Schematic of ERO2.0 input

Forschungszentrum

SOLPS-ITER plasma background

DEMO case requires extrapolation

- background from SOLPS-ITER solution by F. Subba for DEMO [1]
- bridge void spaces up to about 80 cm
- current assumptions:
 - exponential decay for densities
 - exponential decay for temperatures, but restricted to T_{min} = 2 eV
 - uniform decay constant of 5 cm
 - ion parallel flow from local Mach number; Mach number constantly extrapolated

SOLPS-ITER plasma background

DEMO: Range of background plasma parameters

- DEMO covers wide range of electron temperatures and densities
- original SOLPS-ITER range:
 - T_e : ~ eV to 5 keV
 - n_e : ~ 4x10⁹ cm⁻³ to 3x10¹⁵ cm⁻³
- lower parameter limits even smaller due to extrapolation
- parameter range should be covered by available tungsten data to model plasmasurface interaction and impurity transport accurately

— — — separatrix
solps boundary

Plasma-surface interactions

Sputtering, reflection, and distribution of outgoing particles

- sputtering and reflection yields typically from in-house calculations using SDTrimSP
- MD simulations may be important to improve database at low impact energies
 - increasingly important for devices such as DEMO
 - TSVV-7 activities in that direction (see talk by Frederic Granberg)
- ERO2.0 typically uses simplified models for angular/energy distributions of sputtered/reflected particles:
 - polar angle: cosine-like
 - azimuth angle: uniform
 - energy: Thompson-like (sputtering), fixed value based on energy reflection coefficient (reflection)

experimental/modelling input data always appreciated to study impact on global-scale simulations

OPEN-ADAS data in ERO2.0

Tungsten ionization and recombination rate coefficients

 $W^0 + e \rightarrow W^+ + 2e$

ionization rate coefficients do not show dependence on background electron density $W^+ + e \rightarrow W^0$

available recombination data do not cover entire range of background electron densities

OPEN-ADAS data in ERO2.0

Tungsten recombination rate coeffiecients

large qualitative difference between recombination of W^{13+} and $W^{14+} \rightarrow$ why?

c.baumann@fz-juelich.de

What about ...?

Processes not handled within ERO2.0

- W collisions with neutral background
 - can it become important?
 - example: hard-sphere approximation using van-der-Waals radii + 2 eV background temperature

$$\langle \sigma v \rangle = \sigma_{\text{hard sphere}} v_{\text{th}} \sim 10^{-8} \text{ cm}^3 \text{ s}^{-1} > \langle \sigma v \rangle_{\text{ion}} \sim 10^{-9} \text{ cm}^3 \text{ s}^{-1}$$

- for collisions between hydrogen isotopes more sophisticated models exist
- → see Krstic and Schultz, Atomic and Plasma-Material Interaction Data for Fusion, Volume 8 (1998)
- is there something similar for tungsten?
- is non-resonant W charge-exchange W⁰ + D⁺ → W⁺ + D⁰ relevant in detached high-density divertors?
 → see also talk by David Tskhakaya

(Preliminary) ERO2.0 simulations for DEMO

Seeding impurities

Spatial distribution from SOLPS-ITER

- for the first time, ERO2.0 uses distributions for seeding impurities from a plasma edge simulation code
- large restructuring of code was needed
- main advantage:
 - more accurate estimates for background sputtering
 - spatially non-uniform charge state distributions possible

Charge-exchange neutrals

Poloidal profiles

- poloidal profiles of total atomic deuterium flux Γ_D and mean energies typically extraced from EIRENE
- standard approaches to calculate sputtering yield up to now:
 - 1) take mean energies and total flux $\Gamma_{\rm D}$
 - 2) take mean energies and reduced flux (usually $\Gamma_D/10$) to account for high sputtering threshold of ~ 200 eV
- limitations due to strong energy dependence of yield on impact energy:
 - over- or under-estimation of total erosion rate?
 - deviations in spatial erosion patterns?

Charge-exchange neutrals

Energy distribution functions (EDFs)

- resolved energy spectra of D-CXN: a way to improve erosion calculations
- energy spectra at 12 different poloidal locations generated by Sven Wiesen
- spectra quite noisy; but the noise may contribute significantly
- effective yield at any surface element determined by interpolated effective yields of two neighbored spectra

Tungsten gross erosion induced by CXN

Comparison of mean energy and EDF approach

EDF approach: mean energy approach: 5 0

 mean energy
 EDF

 peak flux [m⁻²s⁻¹]
 1.56x10¹⁷
 5.41x10¹⁶

 integrated rate [s⁻¹]
 5.75x10¹⁹
 2.76x10¹⁹

- EDF calculation reduces main chamber erosion by a factor 2-3 (peak flux or integrated rate)
- BUT: additional wall area locations will be subject to finite gross erosion

• EDF approach used in the following

 \rightarrow W gross erosion flux [m⁻²s⁻¹] x 10¹⁶

õ

Erosion and re-deposition maps

erosion

[10 ¹⁸ atoms/s]	net	gross	by D ⁰	by Ar ^{z+}	by W ^{Z+}
main chamber	-16.4	28.3	27.6	0.3	0.4
divertor	15.0	86.8	-	57.8	28.9

Summary

Key results for preliminary PWI-DEMO modelling

- W main chamber erosion dominated by CXN at low-field side
- W divertor erosion dominated by Ar ions and W self-sputtering
 → relative contribution: ~ 2/3 by Ar, ~ 1/3 by W
- strong W transport from main chamber into divertor due to long ionization mean free paths
- main deposition locations:
 - inner and outer divertor above strike lines up to shoulders
 - remote areas above outer divertor
 - top of the machine (upper X-point)
- large uncertainty in modelling due to large separation between plasma grid and wall

-

Tungsten data needs

• ERO2.0 is a 3D code for PWI and impurity migration studies, which needs various W-related input data

PWI part:	Impurity migration part:
sputtering and reflection coefficients for various W-target combinations (H isotopes, He ash, B, seeding species)	 atomic rate coefficients needed in range determined by background ionization rate coefficient (density dependence) recombination rate coefficient (entire density range)
now, mainly SDTrimSP input (internal data generation possible), but MD data required to improve data especially for low impact energies	 relevance of non-resonant W charge exchange with H isotopes?

• when talking about full-W devices, one should not forget about boron data!

Thank you for your attention!

