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Plasma-facing materials in fusion devices

• high melting point

• low sputtering yield due to large mass

• large probability of prompt re-deposition due 

to generally short ionization mean free paths

Tungsten as a prominent candidate
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• stability of core plasma requires low W concentration of < 10-5

• dedicated modelling required in particular for future full-W devices

such as ITER and DEMO



Simulation code ERO2.0
3D Monte-Carlo tool for PWI and global impurity migration studies
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• Lorentz force (including E x B)

• ionization, recombination

• friction (Fokker-Planck), thermal force

• cross-field diffusion

impurity transport:

• physical sputtering/reflection

• (re-)erosion and (re-)deposition

• material mixing

plasma-wall interaction (PWI):
background plasma

W0

Wx+
re-eroded/ 
reflected particles

PFC (substrate W, Be, Mo, …)

[1] A. Kirschner et al., Nuclear Fusion 40, 989 (2000)
[2] J. Romazanov et al., Physica Scripta T170, 014018 (2017)

A. Kirschner



Tungsten data related to ERO2.0 modelling



ERO2.0

Schematic of ERO2.0 input
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SOLPS-ITER plasma background

• background from SOLPS-ITER solution

by F. Subba for DEMO [1]

• bridge void spaces up to about 80 cm

• current assumptions:

- exponential decay for densities

- exponential decay for temperatures,

but restricted to Tmin = 2 eV 

- uniform decay constant of 5 cm

- ion parallel flow from local Mach 

number; Mach number constantly

extrapolated

DEMO case requires extrapolation
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wall                            plasma

~ 80 cm

~ 60 cm

[1] F. Subba et al., Nuclear Fusion 61, 106013 (2021)



SOLPS-ITER plasma background
DEMO: Range of background plasma parameters
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electron temperature:• DEMO covers wide range of electron

temperatures and densities

• original SOLPS-ITER range:

• Te: ~ eV to 5 keV

• ne: ~ 4x109 cm-3 to 3x1015 cm-3

• lower parameter limits even smaller due to

extrapolation

• parameter range should be covered by

available tungsten data to model plasma-

surface interaction and impurity transport

accurately

separatrix

solps boundary

electron density:



Plasma-surface interactions

• sputtering and reflection yields typically from in-house calculations using SDTrimSP

• MD simulations may be important to improve database at low impact energies

- increasingly important for devices such as DEMO

- TSVV-7 activities in that direction (see talk by Frederic Granberg) 

• ERO2.0 typically uses simplified models for angular/energy distributions of sputtered/reflected particles:

- polar angle: cosine-like

- azimuth angle: uniform

- energy: Thompson-like (sputtering), fixed value based on energy reflection coefficient (reflection)

Sputtering, reflection, and distribution of outgoing particles
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experimental/modelling input data always appreciated
to study impact on global-scale simulations



OPEN-ADAS data in ERO2.0
Tungsten ionization and recombination rate coefficients
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W+ + e  W0W0 + e  W+ + 2e

ionization rate coefficients do not show
dependence on background electron
density

available recombination data do not 
cover entire range of background
electron densities



OPEN-ADAS data in ERO2.0
Tungsten recombination rate coeffiecients
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W14+ + e  W13+W13+ + e  W12+

large qualitative difference between recombination of W13+ and W14+
 why?



What about …?
Processes not handled within ERO2.0
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• W collisions with neutral background

- can it become important?

- example: hard-sphere approximation using van-der-Waals radii + 2 eV background temperature

- for collisions between hydrogen isotopes more sophisticated models exist

 see Krstic and Schultz, Atomic and Plasma-Material Interaction Data for Fusion, Volume 8 (1998)

- is there something similar for tungsten?

• is non-resonant W charge-exchange W0 + D+
 W+ + D0 relevant in detached high-density divertors?

 see also talk by David Tskhakaya

𝜎𝑣 = 𝜎hard sphere 𝑣th ∼ 10−8 cm3 s-1 > 𝜎𝑣 ion ∼ 10−9 cm3 s−1



(Preliminary) ERO2.0 simulations for DEMO



Seeding impurities

• for the first time, ERO2.0 uses distributions for seeding

impurities from a plasma edge simulation code

• large restructuring of code was needed

• main advantage: 

• more accurate estimates for background sputtering

• spatially non-uniform charge state distributions possible

Spatial distribution from SOLPS-ITER
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Charge-exchange neutrals

• poloidal profiles of total atomic deuterium flux ГD and mean

energies typically extraced from EIRENE

• standard approaches to calculate sputtering yield up to now: 

1) take mean energies and total flux ГD

2) take mean energies and reduced flux (usually ГD /10) to

account for high sputtering threshold of ~ 200 eV

• limitations due to strong energy dependence of yield on 

impact energy:

• over- or under-estimation of total erosion rate?

• deviations in spatial erosion patterns?

Poloidal profiles
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outer midplane inner / outer divertor



Charge-exchange neutrals

• resolved energy spectra of D-CXN: 

a way to improve erosion calculations

• energy spectra at 12 different poloidal

locations generated by Sven Wiesen

• spectra quite noisy; but the noise may

contribute significantly

• effective yield at any surface element

determined by interpolated effective

yields of two neighbored spectra

Energy distribution functions (EDFs)
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EDFs – Energy Distribution Functions



Tungsten gross erosion induced by CXN
Comparison of mean energy and EDF approach
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mean energy approach: EDF approach:
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mean energy EDF

peak flux [m-2s-1] 1.56x1017 5.41x1016

integrated rate [s-1] 5.75x1019 2.76x1019

• EDF calculation reduces main chamber erosion

by a factor 2-3 (peak flux or integrated rate)

• BUT: additional wall area locations will be subject

to finite gross erosion

• EDF approach used in the following



Erosion and re-deposition maps
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main chamber -16.4 28.3 27.6 0.3 0.4
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Summary

• W main chamber erosion dominated by CXN at low-field side 

• W divertor erosion dominated by Ar ions and W self-sputtering

 relative contribution: ~ 2/3 by Ar, ~ 1/3 by W

• strong W transport from main chamber into divertor due to long ionization mean free paths

• main deposition locations: 

- inner and outer divertor above strike lines up to shoulders 

- remote areas above outer divertor

- top of the machine (upper X-point)

• large uncertainty in modelling due to large separation between plasma grid and wall

Key results for preliminary PWI-DEMO modelling
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Summary

• ERO2.0 is a 3D code for PWI and impurity migration studies, which needs various W-related input data

Tungsten data needs
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PWI part:

- sputtering and reflection coefficients for various

W-target combinations (H isotopes, He ash, B,

seeding species)

- now, mainly SDTrimSP input (internal data

generation possible), but MD data required to

improve data especially for low impact energies

Impurity migration part:

- atomic rate coefficients needed in range determined by

background

- ionization rate coefficient (density dependence)

- recombination rate coefficient (entire density range)

- relevance of non-resonant W charge exchange with

H isotopes?

• when talking about full-W devices, one should not forget about boron data!



Thank you for your attention!


