

Electron collisions with H₂⁺, HD⁺ and D₂⁺: computation of cross sections and rate coefficients, and comparison with storage ring measurements

storage ring measurements A. Abdoulanziz¹, E. Djuissi¹, J. Boffelli¹, Y. Moulane^{,2,3}, F. Iacob⁴, N. Pop⁵, M. D. Epée Epée⁶, O. Motapon^{6,7}, K. Chakrabarti⁸, J. Tennyson⁹,

V. Laporta^{9,10}, J. Zs Mezei¹¹, X. Urbain¹², I. F. Schneider^{1,13}

¹LOMC, Univ. Le Havre Normandie, ²Univ. Cadi Ayyad, Marrakech, ³Univ. De Liège, ⁴West Univ. Timisoara, ⁵Politehnica Univ. Timisoara, ⁶Univ. of Douala, ⁷Univ. of Maroua, ⁸Scottish Church College, Calcutta, ⁹University College London, ¹⁰, Istituto per la Scienza e Tecnologia dei Plasmi, Bari, ¹¹Inst. for Nuclear Reesearch, Debrecen, ¹²Inst. of Condensed Matter and Nanosciences, Univ. de Louvain, ¹³Lab. Aimé Cotton, Univ. Paris-Saclay.

 $AB^+(N_i^+, V_i^+) + e^- \longrightarrow A + B$ Dissociative Recombination: DR

 \rightarrow A + B⁺ + e⁻ MAD

Ro-Vibrational (de)Excitation: $RV(d)E \longrightarrow AB^+(N_f^+, V_f^+) + e^-$

Dissociative Excitation: DE

Dissociative recombination (MAR) Dissociative excitation (MAD) of several molecular cations invoked in the previous talks H_2^+ and others (will be shown at the end) Talks of: Ivo CLASSEN, **Richard ENGELN**, Dirk WÜNDERLICH, Kevin VERHAEGH Mathias GROTH, Annarita LARICCHIUTA

IAEA 50 years of INIS International Nuclear

Home INIS Home Thesaurus Browse

Collision processes in low-temperature hydrogen plasmas Janev, R.K.; Reiter, D.; Samm, U.

Forschungszentrum Juelich GmbH (Germany). Inst. fuer Plasmaphysik, EURATOM Association, Trilateral Euregio Cluster

Abstract

[en] Collision processes among the constituents of low-temperature hydrogen plasmas (e, H, H⁺, H⁻, H₂, H₂⁺, H₃⁺) play a key role in technical plasma applications as well as in the boundary regions of magnetically confined fusion plasmas. In this work a review of the current knowledge on their cross sections is presented. Collision processes of electronically and vibrationally excited species are also included in the present review. The energy range in which these processes are considered extends from thermal energies to several hundreds electronvolts and to the keV region for some heavy-particle collision processes). The available experimental and theoretical cross section information is critically assessed and

on the collision processes taking place in hydrogen plasmas in the temperature range from 0.01 eV to several hundreds eV. This temperature range covers the typical temperature conditions of many astrophysical and laboratory plasmas in-

 $2021/03/31_IAEA_FZJ_WH$

KINETIC MODEL: CHEMICAL NETWORK

Coppola, Galli et al, 2011-...

22 species
~ 200 reactions
state-to-state
~ 50 species
~ 2500 reactions

Typical behaviour of e⁻/H₂⁺ (HD⁺, D₂⁺) recombination

ALL 3 EUROPEAN storage rings:

PHYSICAL REVIEW A 68, 042702 (2003)

Absolute high-resolution rate coefficients for dissociative recombination of electrons with HD⁺: Comparison of results from three heavy-ion storage rings

A. Al-Khalili,^{1,2} S. Rosén,¹ H. Danared,³ A. M. Derkatch,¹ A. Källberg,³ M. Larsson,¹ A. Le Padellec,^{1,4} A. Neau,¹
J. Semaniak,² R. Thomas,^{1,5} M. af Ugglas,³ L. Vikor,¹ W. Zong,¹ W. J. van der Zande,^{5,*} X. Urbain,^{6,†} M. J. Jensen,⁶
R. C. Bilodeau,⁶ O. Heber,⁷ H. B. Pedersen,⁶ C. P. Safvan,⁶ L. H. Andersen,⁶ M. Lange,^{8,‡} J. Levin,⁸ G. Gwinner,⁸
L. Knoll,⁸ M. Scheffel,⁸ D. Schwalm,⁸ R. Wester,⁸ D. Zajfman,^{7,8} and A. Wolf⁸

How one measures ?

2021/03/31-IAEA-FZJ-WH

...+ Convolution < 2012 with ANISOTROPIC Maxwell Distribution:

 $\alpha = \langle \mathbf{v}\sigma \rangle = \int \int \sigma(\mathbf{v})\mathbf{v}f(\mathbf{v}_d, \mathbf{v})d\mathbf{v} \tag{1}$

$$f(\mathbf{v}_d, \mathbf{v}) = \frac{m}{2\pi k T_{e\perp}} exp(-\frac{m\mathbf{v}_{\perp}^2}{2k T_{e\perp}}) \sqrt{\frac{m}{2\pi k T_{e\parallel}}} exp(-\frac{m(\mathbf{v}_{\parallel} - \mathbf{v}_d)^2}{2k T_{e\parallel}})$$
(2)

Best parameters:

 $T_{long} = 20 \ \mu eV = 0.23 \ K = 0.16 \ cm^{-1}$ $T_{trans} = 500 \ \mu eV = 5.80 \ K = 4.03 \ cm^{-1}$

Towards STATE-to-STATE results, i.e. ROTATIONALLY & VIBRATIONALLY resolved xs & rates.

On the theoretical side…

2021/03/31-IAEA-FZJ-WH

Physica Scripta. T96, 52-60, 2002

Takagi: e⁻/H₂⁺ dynamics

Dissociative Recombination and Excitation of H_2^+ , HD^+ , and D_2^+ with Electrons for Various Vibrational States

H. Takagi*

Fig. 4a-d. DR cross section of H⁺₂ for each initial vibrational state *v*. The dark bold line indicates the total DR cross section. Other lines show the partial cross sections of producing the excited atoms of principle quantum number *n*, whose value is indicated in the figure. The symbol $n \ge 6$ means $\infty \ge n \ge 6$.

$AB^+(N_i^+, v_i^+) + e^- \longrightarrow A + B$ Dissociative Recombination: DR

Dissociative Excitation: DE $\longrightarrow A + B^+ + e^-$

AB⁺: **H**₂⁺, **HD**⁺, **D**₂⁺

WHY new calculations ? 1) Different – some updated - molecular structure data 2) Data on ro-vibrational transitions $AB^+(N_i^+, V_i^+) + e^- \longrightarrow A + B$ Dissociative Recombination: DR

Ro-Vibrational (de)Excitation: RV(d)E \longrightarrow AB⁺(N_f⁺, v_f⁺) + e⁻ Dissociative Excitation: DE \longrightarrow A + B⁺ + e⁻

AB⁺: H₂⁺, HD⁺, D₂⁺

Electron-cold molecular ion reaction: Dissociative Recombination

 $2021/03/31_IAEA_FZJ_WH$

H₂⁺: DR xs Total (direct & indirect) vs direct mechanisms

The relevant POTENTIAL ENERGY CURVES

H_2

How do we compute electron-impact recombination and excitation?

Electron/molecular cation reactive collisions

Main THEORETICAL approach: MQDT

Seaton (1958-1983), Fano, Jungen, Greene, Giusti -Suzor (1970-...),...

The various mechanisms which drive the DYNAMICS depend on the ENERGY:

2021/03/31_IAEA_FZJ_WH

"Very" Low Energy: ROTATION and Vibration, DISCRETE ro-vibrational spectrum, "Fano"resonances, maximum ACCURACY

 $2021/03/31_IAEA_FZJ_WH$

Rotational transitions induced by collisions of HD⁺ ions with low-energy electrons

O. Motapon,^{1,2} N. Pop,³ F. Argoubi,⁴ J. Zs Mezei,^{2,5,6} M. D. Epee Epee,¹ A. Faure,⁷ M. Telmini,⁴ J. Tennyson,⁸ and I. F. Schneider^{2,5}

Figure 3. DR cross sections of HD⁺ initially in one of its lowest rotational level N_i^+ (vibrational ground state).

Rotational transitions induced by collisions of HD⁺ ions with low-energy electrons

O. Motapon,^{1,2} N. Pop,³ F. Argoubi,⁴ J. Zs Mezei,^{2,5,6} M. D. Epee Epee,¹ A. Faure,⁷ M. Telmini,⁴ J. Tennyson,⁸ and I. F. Schneider^{2,5}

N. De Ruette, X. Urbain, O. Novotny, A. Wolf,.... @ TSR vs MQDT $H_2^+(N_i^+, V_i^+) + e^- \longrightarrow H + H$

1st state-to-state comparison experiment/theory

How important is the target excitation ?

2021/03/31-IAEA-FZJ-WH

FIG. 9. (Color online) Maxwell isotropic rate coefficients for the dissociative recombination $\text{HD}^+(X\,^2\Sigma_g^+)$ with $v_i^+ = 0$ as a function of initial rotational level, $N_i^+ = 0$ to 10.

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY MNRAS **455**, 276–281 (2015)

Reactive collisions of very low-energy electrons with H_2^+ : rotational transitions and dissociative recombination

M. D. Epée Epée,¹ J. Zs Mezei,^{2,3,4} O. Motapon,^{1,5}* N. Pop⁶ and I. F. Schneider^{2,3}*

¹LPF, UFD Mathématiques, Informatique Appliquée et Physique Fondamentale, University of Douala, P. O. Box 24157, Douala, Cameroon

²Laboratoire Ondes et Milieux Complexes, UMR 6294 CNRS and Université du Havre, 25, rue Philippe Lebon, BP 540, F-76058 Le Havre, France

³Laboratoire Aimé Cotton CNRS-UPR-3321, Université Paris-Sud, Orsay F-91405, France

⁴ Laboratoire des Sciences des Procédés et des Matériaux, UPR 3407 CNRS and Univ. Paris 13, 99 avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France

⁵Faculty of Science, University of Maroua, PO Box 814 Maroua, Cameroon

⁶Department of Physical Foundation of Engineering, University Politechnica of Timisoara, Bv Vasile Parvan No 2, 300223, Timisoara, Romania

Figure 3. Maxwell rate coefficients for rotational excitation $N_i^+ \rightarrow N_i^+ + {}_{44}$ 2, with $N_i^+ = 0$ to 10 of $H_2^+(X^2\Sigma_g^+)$ on its ground vibrational level $v_i^+ = 0$.

How important are the RESONANCES ? How important are the ROTATIONAL effects ?

Focus on ISOTOPIC effects

2021/03/31_IAEA_FZJ_WH

Table 1. The energy of the first 30 ro-vibrational levels of HD⁺ $X^1\Sigma_g^+$ electronic state relative to the ground $(N_i^+, v_i^+) = (0, 0)$ level.

no	(N_i^+, v_i^+)	energy(eV)	no	(N_i^+, v_i^+)	energy(eV)
1	(0,0)	0.0000	16	(4,1)	0.289
2	(1,0)	0.0054	17	(5,1)	0.314
3	(2,0)	0.0163	18	(11,0)	0.337
4	(3,0)	0.0325	19	(6,1)	0.344
5	(4,0)	0.0539	20	(7,1)	0.379
6	(5,0)	0.0804	21	(12,0)	0.394
$\overline{7}$	(6,0)	0.112	22	(8,1)	0.418
8	(7,0)	0.148	23	(13,0)	0.455
9	(8,0)	0.189	24	(9,1)	0.461
10	(9,0)	0.234	25	(0,2)	0.462
11	(0,1)	0.237	26	(1,2)	0.467
12	(1,1)	0.242	27	(2,2)	0.477
13	(2,1)	0.253	28	(3,2)	0.492
14	(3,1)	0.268	29	(10,1)	0.508
15	(10,0)	0.284	30	(4,2)	0.511

50

Figure 1. Maxwell rate coefficients of the ground HD $^+(X^2\Sigma_g^+)$ molecular target for Dissociative Recombination (DR) and Rotational Excitation (RE) in the left, DR and Vibrational Excitation (VE) in the middle and DR and mixed Ro-Vibrational Excitations (RVE) in the right panels.

Figure 2. DR Maxwell rate coefficients for the lowest 30 ro-vibrational levels of $HD^+(X^2\Sigma_g^+)$ molecular target.

Figure 22. Electron-impact rotational de-excitation ($\triangle N^+ = -2$) and vibrational excitation ($\triangle v^+ = 1$) of HD⁺ [$^2\Sigma_g^+$ ($N_i^+, v_i^+ = 0$)]:

Figure 25. Electron-impact rotational and vibrational de-excitation $(\Delta N_i^+ = -2, \Delta v_i^+ = -1)$ of HD⁺ $[^2\Sigma_g^+ (N_i^+, v_i^+=1)]$: The effect of the ro-vibrational excitation of the target.

D₂⁺ **DR & rotational transitions for vibrationally relaxed states**

Figure 2. Maxwell rate coefficients for the dissociative recombination of $D_2^+(X^2\Sigma_g^+)$ on its ground vibrational level $v_i^+ = 0$, as a function of its initial rotational level, $N_i^+ = 0$ to 10.

55

D₂⁺ vs HD⁺ vs H₂⁺: rotational transitions for vibrationally relaxed states

"Moderately" Low Energy: "NO rotation", DISCRETE vibrational spectrum, "Fano" RESONANCES

2021/03/31_IAEA_FZJ_WH

Moulane 2017, Colboc 2016

High Energy: "NO rotation", DISCRETE & CONTINUUM vibrational spectrum, NO "Fano" RESONANCES

 $2021/03/31_IAEA_FZJ_WH$

Dissociative recombination of electrons with diatomic molecular cations above dissociation threshold: Application to H_2^+ and HD^+

Moulane 2017

Rate coefficients depending on T_e and T_v

Abdoulanziz, Laporta, Mezei et al 2019

 $2021/03/31_IAEA_FZJ_WH$

Abdoulanziz, Laporta, Mezei et al 2019

2021/03/31_IAEA_FZJ_WH

 $2021/03/31_IAEA_FZJ_WH$

HYDRIDES !

2021/03/31-IAEA-FZJ-WH

List of the main elements relevant to the ITER plasma (D. Reiter)

Atomic Data and Nuclear Data Tables 115–116 (2017) 287–308

Contents lists available at ScienceDirect

Atomic Data and Nuclear Data Tables

journal homepage: www.elsevier.com/locate/adt

Low-energy collisions between electrons and BeH⁺: Cross sections and rate coefficients for all the vibrational states of the ion

Atomic Data clear Data Ta

S. Niyonzima^{a,b}, S. Ilie^{a,c}, N. Pop^{a,c}, J. Zs. Mezei^{a,d,e,f}, K. Chakrabarti^g, V. Morel^h, B. Peres^h, D.A. Littleⁱ, K. Hassouni^d, Å. Larson^j, A.E. Orel^k, D. Benredjem^e, A. Bultel^h, J. Tennysonⁱ, D. Reiter¹. I.F. Schneider^{a,e,*}

IOP Publishing

Plasma Phys. Control. Fusion 59 (2017) 045008 (10pp)

Plasma Physics and Controlled Fusion

https://doi.org/10.1088/1361-6587/aa5c56

2017 Theoretical resonant electron-impact vibrational excitation, dissociative recombination and dissociative excitation cross sections of ro-vibrationally excited **BeH⁺ ion**

V Laporta^{1,2}, K Chakrabarti³, R Celiberto^{1,4}, R K Janev⁵, J Zs Mezei^{6,7,8,9}, S Nivonzima^{6,10}, J Tennyson² and I F Schneider^{6,8}

BeH⁺ + e⁻

Rate coefficients $(\text{cm}^3\text{s}^{-1})$

2017

BeD⁺ + e⁻ 2018

N. Pop, S. Niyonzima, J. Zs. Mezei, ...

Plasma Sources Sci. Technol. 27 (2018) 025015 (10pp)

https://doi.org/10.1088/1361-6595/aaabef

Low-energy collisions between electrons and BeD⁺

S Niyonzima^{1,2}, N Pop³, F Iacob⁴, Å Larson⁵, A E Orel⁶, J Zs Mezei^{2,7,8}, K Chakrabarti⁹, V Laporta^{2,10}, K Hassouni⁷, D Benredjem¹¹, A Bultel¹², J Tennyson¹⁰, D Reiter¹³ and I F Schneider^{2,11}

20190530-Timisoara-TIM19

ARTICLE IN PRESS

Atomic Data and Nuclear Data Tables xxx (xxxx) xxx

Reactive collisions between electrons and BeT⁺: Complete set of thermal rate coefficients up to 5000 K

N. Pop^a, F. Iacob^{b,*}, S. Niyonzima^c, A. Abdoulanziz^d, V. Laporta^e, D. Reiter^f, I.F. Schneider^{d,g}, J.Zs. Mezei^{d,h}

 $2021/03/31_IAEA_FZJ_WH$

Monthly Notices ROYAL ASTRONOMICAL SOCIETY

MNRAS 479, 2415-2420 (2018) Advance Access publication 2018 June 12

doi:10.1093/mnras/sty1549

ArH⁺ + e⁻

2018

V. Laporta, A. Abdoulanziz, **E. Roueff,**... Theoretical study of ArH⁺ dissociative recombination and electron-impact

vibrational excitation

A. Abdoulanziz,¹ F. Colboc,¹ D. A. Little,² Y. Moulane,^{3,4} J. Zs. Mezei,^{1,5,6} E. Roueff,⁷ J. Tennyson,² I. F. Schneider^{1,8} and V. Laporta^{1,2}*

FIG. 3: Rate coefficient curves of the dissociative recombinaison and the competitve process (DE, EC, VE and VdE)

What about WH⁺ ? W_mX_n⁺ ?

2021/03/31_IAEA_FZJ_WH

CONCLUSIONS

Temporary captures into super-excited states: HUGE RESONANT EFFECTS

Dependence of the cross section and rate coefficients on the INITIAL ro-vibrational level: STRONG

We provide STATE-TO-STATE cross sections & rate coefficients
SUPORT

Fédération de Recherche

FR FCM Fusion par Confinement Magnétique - ITER

Financement

CINITS

PCMI/INSU (2018-2020)

