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• MCCC method : fixed-nuclei (FN) approach

Cross sections obtained with the FN MCCC method

• MCCC method : adiabatic nuclei (AN) approach

Vibrationally-resolved cross sections from AN MCCC

Accessing MCCC collision data: MCCC database

• Example: modeling - Collisional Radiative Model for H2

• Scattering from the excited states (n=2: a 3Sg+ , c 3Pu,…)

• Isotopic and vibrational-level dependence of H2 dissociation by electron impact

• Conclusions

Overview
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• Born-Oppenheimer approximation

• Fixed-nuclei approximation, R = fixed 

• Diagonalization of the target Hamiltonian HT

in a Sturmian (Laguerre) basis
modeling of infinite number of bound & continuum 
states with a finite number of pseudostates
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MCCC method:  fixed-nuclei (FN) approach

• Solve integral LS equation for the T matrix

• Cross sections

Solve for the electronic 
wave function→

→
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Why electron-molecule is difficult: no central potential 

à multi-channel expansion + projectile partial wave expansion lead to a very large size of

coupled equations,  to solve need fast computers, effective parallelization, etc…. 
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• total cross section, total ionization cross section, stopping power

• elastic scattering (ICS, DCS)

• excitation cross sections (ICS, DCS) for 

- b 3Su+ , a 3Sg+, c 3Pu , e 3Su+, h 3Sg+, d 3Pu, i 3Pg, j 3Du

- B 1Su+, C 1Pu, EF 1Sg+, B’ 1Su+, D 1Pu, B” 1Su+, D’ 1Pu, H 1Sg+, GK 1Sg+, I 1Pu, , J 1Dg

Cross sections for electron scattering from H2
FN single-centre spherical coordinate MCCC approach

Scarlett et al., Phys. Rev. A 96 (2017) 062708
Zammit et al., Phys. Rev. A 95 (2017) 022708
Zammit et al., Phys. Rev. Lett. 116 (2016) 233201

Established convergence in cross sections by performing: 
491, 427, 259, 92, 9-state close-coupling

Often found large disagreement with previous experimental and theoretical results
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Cross sections for the b 3Su+ state
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Cross sections for the b 3Su+ state

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 5  10  15  20  25

cr
os

s 
se

ct
io

n 
(a

.u
.)

incident energy (eV)

b 3Σu
+

 Nishimura and Danjo (1986)
 Khakoo and Segura (1994)

 CCC (2017)
 recommended (2008)
 Zawadzki et al. (2018)

Zawadzki et al., Phys. Rev. A 97 (2018) 050702(R)
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New time of flight (TOF) spectrometer at California State University, Fullerton
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UKRMol+  and MCCC calculations: good agreement
Meltzer et al., J. Phys. B. 53 (2020) 145204ICS

DCS
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MCCC method: adiabatic nuclei (AN) approach

Tf µ ,iv (E) = dR ϕ f µ (R)Tfi (E;R) ϕiv (R)∫

σ f µ ,iv (E)∝ Tf µ ,iv (E)
2

• AN T matrix

• jnµ(R) are vibrational wave functions 

• vibrationally-resolved cross sections

Single-center spherical-coordinate formulation is inadequate 

Spheroidal-coordinate formulation of the MCCC method

Many FN calculations have to be performed on a grid of R

Computationally efficient / feasible  approach is required

↓
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• computationally expensive (many R)

• need high accuracy of FN model at large R
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MCCC method: spheroidal coordinate formulation
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Very accurate target 
structure for R values 
spanned by first 10 H2
vibrational levels 

Still within 5% accuracy for 
larger R

Target states
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Scarlett et al., Atomic Data and Nuclear 
Data Tables, 137 (2021) 101361, 
139 (2021) 101403

MCCC(210) fully vibrationally resolved cross sections

Data files per transition: 

MCCC-el-H2-B1Su_vf=10.X1Sg_vi=0.txt

Analytic fits

Calculations have been performed for over 58,000 transitions 
in H2 and its 5 isotopologues
includes dissociation cross sections

In collaboration with Yu. Ralchenko (NIST)

Initial states

Final states

Number of bound vibrational levels

Scattering on all bound levels of the 𝑋 !Σ"# state

(#)



All cross sections and fits available online

• Atom. Data Nucl. Data Tables supplementary materials
Complete collision data set for electrons scattering on molecular hydrogen and its 

isotopologues:  

I. Fully vibrationally-resolved electronic excitation of H2(X 1Sg+ )

Atomic Data and Nuclear Data Tables 137 (2021) 101361

II. Fully vibrationally-resolved electronic excitation of the isotopologues of H2(X 1Sg+)

Atomic Data and Nuclear Data Tables 139 (2021) 101403

• LXCat Database – lxcat.net

• IAEA hcdb: Atomic and Molecular Data for Fusion Energy Research

https://db-amdis.org/hcdb/

• MCCC Database – mccc-db.org

Accessing MCCC data
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All cross sections and fits available online:

• Atom. Data Nucl. Data Tables supplementary materials
Complete collision data set for electrons scattering on molecular hydrogen and its 

isotopologues:  

I. Fully vibrationally-resolved electronic excitation of H2(X 1Sg+ )
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Dissociative excitation
Tapley et al., Phys. Rev. A 98 (2018) 032701

B’ 1Su
+ state has the largest DE cross section

for scattering on v = 0 ground state X 1Sg
+ 

exp.: Liu et. al,  J. Phys B 45 (2012)
IP: semiclassical impact-parameter method – Bari group

Celiberto et al., Atom. Data Nucl. Data Tables 77 (2001) 161
FBA: Borges et al., Phys. Rev. A 57 (1998) 1025
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Collisions data & plasma physics applications:  
Janev & Miles comparisons
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Miles, Thompson, Green, J. App. Phys. 43 (1972) 678; 
Janev, Reiter, Samm, JÜL-4105, Jülich, 2003

used by Ursel Fantz & Dirk Wuenderlich (Garching) 
in their CR model à
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Comparison of measured population densities 
of the d3 state to the ones calculated with the 
CR model Yacora H2 using cross section from 
either Miles et al.  [25], Janev et al. [21] or the 
MCCC data.

from the spectroscopic measurements of the Fulcher-a
transition

Further improvements:
• more accurate account of cascading from 

high level states
• use of vibrationally resolved cross sections 
• use of rotationally resolved cross sections 

Significant differences in the simulation results 
depending on the collision dataset used →
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it is a metastable state
it is lower than a 3Sg

+(v=0) state 
by 0.0228 eV

Scattering from excited (n=2, v=0) electronic states
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c 3Pu à a 3Sg
+ transition is by far the largest as it is a  

dipole allowed transition
small excitation energy means: 
(a) large projectile partial wave expansion is required
(b) Born limit will be reached relatively fast
(c) target structure accuracy is very important

Vertical excitation energies at 𝑅 = 2

Example: the c 3Pu(v=0) state 

Excitation energies are relative to the c 3Pu state
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• Much slower than for scattering on ground state (Lmax = 10)
• Many dipole-allowed transitions unconverged even with Lmax = 25
• Even with Analytical Born Completion Lmax = 20 is necessary
• Agreement with recent UKRMol+ calculations (Lmax = 6) 

for dipole-forbidden and spin-exchange transitions, but not dipole-allowed transitions

MCCC (AN): Scarlett et al., PRA 103 (2021) 032802

UKRmol+ (FN): Meltzer et al., J. Phys. B 53 (2020) 245203

Partial-wave convergence:

SMC (FN): Sartori et al. Phys. Rev. A 55 (1997) 3243

FBA (FN): Rescigno & Orel (from IEEE Trans. Plasma Sci. PS-11, 266 (1983).)

10−2

100

102
SMC

c 3Πu (v = 0) → X 1Σg
 +

100

102

104

106

In
te

gr
at

ed
 c

ro
ss

 s
ec

tio
n 

(u
ni

ts
 o

f a
02 )

c 3Πu (v = 0) → a 3Σg
 +

100

102

0.01 1 100
Incident energy (eV)

c 3Πu (v = 0) → b 3Σu
 +

10−2

100

102

104MCCC AN
UKRMol+ R = 2.0

c 3Πu (v = 0) → B 1Σu
 +

0

10

20

30

40MCCC R = 2.0 Lmax = 6
FBA

c 3Πu (v = 0) → C 1Πu

1 10 100
0

2

4

6

8
c 3Πu (v = 0) → EF 1Σg

 +

10−2

100

102
SMC

c 3Πu (v = 0) → X 1Σg
 +

100

102

104

106

In
te

gr
at

ed
 c

ro
ss

 s
ec

tio
n 

(u
ni

ts
 o

f a
02 )

c 3Πu (v = 0) → a 3Σg
 +

100

102

0.01 1 100
Incident energy (eV)

c 3Πu (v = 0) → b 3Σu
 +

10−2

100

102

104MCCC AN
UKRMol+ R = 2.0

c 3Πu (v = 0) → B 1Σu
 +

0

10

20

30

40MCCC R = 2.0 Lmax = 6
FBA

c 3Πu (v = 0) → C 1Πu

1 10 100
0

2

4

6

8
c 3Πu (v = 0) → EF 1Σg

 +

10−2

100

102
SMC

c 3Πu (v = 0) → X 1Σg
 +

100

102

104

106

In
te

gr
at

ed
 c

ro
ss

 s
ec

tio
n 

(u
ni

ts
 o

f a
02 )

c 3Πu (v = 0) → a 3Σg
 +

100

102

0.01 1 100
Incident energy (eV)

c 3Πu (v = 0) → b 3Σu
 +

10−2

100

102

104MCCC AN
UKRMol+ R = 2.0

c 3Πu (v = 0) → B 1Σu
 +

0

10

20

30

40MCCC R = 2.0 Lmax = 6
FBA

c 3Πu (v = 0) → C 1Πu

1 10 100
0

2

4

6

8
c 3Πu (v = 0) → EF 1Σg

 +

10−2

100

102
SMC

c 3Πu (v = 0) → X 1Σg
 +

100

102

104

106

In
te

gr
at

ed
 c

ro
ss

 s
ec

tio
n 

(u
ni

ts
 o

f a
02 )

c 3Πu (v = 0) → a 3Σg
 +

100

102

0.01 1 100
Incident energy (eV)

c 3Πu (v = 0) → b 3Σu
 +

10−2

100

102

104MCCC AN
UKRMol+ R = 2.0

c 3Πu (v = 0) → B 1Σu
 +

0

10

20

30

40MCCC R = 2.0 Lmax = 6
FBA

c 3Πu (v = 0) → C 1Πu

1 10 100
0

2

4

6

8
c 3Πu (v = 0) → EF 1Σg

 +

10−2

100

102
SMC

c 3Πu (v = 0) → X 1Σg
 +

100

102

104

106

In
te

gr
at

ed
 c

ro
ss

 s
ec

tio
n 

(u
ni

ts
 o

f a
02 )

c 3Πu (v = 0) → a 3Σg
 +

100

102

0.01 1 100
Incident energy (eV)

c 3Πu (v = 0) → b 3Σu
 +

10−2

100

102

104MCCC AN
UKRMol+ R = 2.0

c 3Πu (v = 0) → B 1Σu
 +

0

10

20

30

40MCCC R = 2.0 Lmax = 6
FBA

c 3Πu (v = 0) → C 1Πu

1 10 100
0

2

4

6

8
c 3Πu (v = 0) → EF 1Σg

 +

(16)

Scattering from excited (n=2, v=0) electronic states
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Scattering from excited (n=2, v=0) electronic states



CSP-ic.: Joshipura et al., J. Phys. B 43 (2010) 135207

Gryzinski: Wunderlich et al., Chem. Phys. 390 (2011) 75 
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Scattering from excited (n=2, v=0) electronic states



Isotopic and vibrational-level dependence 
of H2 dissociation by electron impact

2

ously [48] performed more detailed dissociation calculations
for vibrationally-excited H2 including all important pathways
to dissociation into neutral fragments from low to high inci-
dent energies. These calculations can be readily extended to
include the isotopologues in the future.

We first describe the standard treatment of dissociation,
which is a straightforward adaption of the method for non-
dissociative excitations. We use SI units throughout for con-
sistent comparison with TT01’s formulas. For simplicity, we
assume the AN approximation has been applied according to
the definitions in the review of electron-molecule collisions by
Lane [49], but note that the following discussion would remain
valid if the energy-balanced AN method [15] or even full elec-
tronic and vibrational close-coupling was used. In terms of
the electronic partial-wave T -matrix elements defined by Lane
[49], the expression for the energy-differential cross section for
dissociation of the vibrational level v into atomic fragments of
asymptotic kinetic energy Ek in the standard formulation is

d!

dEout
D "

k2
in

X
`0m0
`m

ˇ̌
h#Ek jT`0m0;`m.RI Ein/j#vi

ˇ̌2
; (2)

where Ein and kin are the incident projectile energy and
wavenumber, and # are the vibrational wave functions. The
convergence of Eq. (2) with respect to the maximum ` in-
cluded in the projectile plane-wave expansion is relatively fast
for the spin-exchange X 1†C

g ! b 3†C
u transition (previous

MCCC studies have found `max D 6 to be sufficient at all ener-
gies [4]). However, when the partial-wave method is applied
to direct (non-exchange) transitions, larger expansions are re-
quired, along with the analytical Born completion technique
to account for the infinity of terms ` > `max [4]. The energies
of the scattered electron and dissociating fragments are related
by

Ek D Ein ! Dv ! Eout; (3)

where Dv is the threshold dissociation energy of the vibrational
level v [15], and Eout is the outgoing projectile energy. This
relationship makes it possible to treat the energy-differential
cross section as a function of either Eout or Ek. When this
method has been applied in previous work [8–16, 18–24],
Eq. (2) is not derived explicitly for the case of dissociation
since the derivation follows exactly the same steps summarized
by Lane [49] for the non-dissociative vibrational-excitation
cross section. The only difference is the replacement of the
final bound vibrational wave function with an appropriately-
normalized continuum wave function #Ek.R/. In principle the
continuum normalization is arbitrary so long as the density of
final states is properly accounted for. According to standard
definitions [50], the density of states $ for the vibrational
continuum satisfies the following relation:

Z 1

0

#Ek.R/#Ek.R
0/$.Ek/ dEk D ı.R ! R0/; (4)

giving a clear relationship between the continuum-wave nor-
malization and density. Since the formulas presented by Lane

[49] for non-dissociative excitations are written in terms of
bound vibrational wave functions, with a density of states equal
to unity (by definition), the most straightforward adaption to
dissociation simply replaces them with continuum wave func-
tions normalized to have unit density as well. Indeed, many of
the previous works [13, 15, 21, 24, 51, 52] which have applied
the AN, rather than fixed-nuclei (FN), method to dissociation
explicitly state that the continuum wave functions are energy
normalized, which implies unit density and the following res-
olution of unity:

Z 1

0

#!
Ek.R/#Ek.R

0/ dEk D ı.R ! R0/: (5)

The works which have applied the FN method also implic-
itly assume energy normalization, since the FN approximation
utilizes Eq. (5) to integrate over the dissociative states analyt-
ically. Note that Eq. (5) implies the functions #Ek have di-
mensions of 1=

p
energy " length. The bound vibrational wave

functions are normalized according to
Z 1

0

#!
v .R/#v0.R/ dR D ıv0v; (6)

and hence they have dimensions of 1=
p

length. The electronic
T -matrix elements defined by Lane [49] are dimensionless,
and the integration over R implied by the bra-kets in Eq. (2)
cancels the combined dimension of 1=length from the vibra-
tional wave functions, so it is evident that the right-hand side
of Eq. (2) has dimensions of area=energy as required (note that
1=k2

in has dimensions of area).
The standard approach to calculating dissociation cross sec-

tions has been applied extensively in the literature [8–24]. It
is also consistent with well-established methods for comput-
ing bound-continuum radiative lifetimes or photodissociation
cross sections, which replace discrete final states with disso-
ciative vibrational wave functions. The latter are either energy
normalized [53], or normalized to unit asymptotic amplitude
with the energy-normalization factor included explicitly in the
dipole matrix-element formulas [54, 55].

TT01 criticized the standard technique, claiming that a
proper theoretical formulation for dissociation did not exist,
and suggested that a more rigorous derivation for the specific
case where there are three fragments in the exit channels is
required. We have performed our own derivation following
the ideas laid out by TT01 and found that they lead directly
to Eq. (2). However, TT01 arrived at an expression which is
markedly different:

d!

dEout
D mH

4"3me

Ek

Ein

X
`0m0
`m

ˇ̌
h#Ek jT`0m0;`m.RI Ein/j#vi

ˇ̌2
: (7)

Here mH is the hydrogen nuclear mass, which is replaced
with the deuteron or triton mass in their later investigation
into dissociation of D2 and T2 [27]. Comparing Eqs. (2)
and (7), we see that TT01’s formula is different by a factor
of mHEk=2"4„2 (the T -matrix elements here are the same
as those in Eq. (2)). The distinguishing feature of TT01’s

Standard formula to calculate energy-differential cross 
section for dissociation (used in MCCC): 

• 𝜈"! energy-normalized continuum vibrational 
wave functions

• Isotopic dependence only from vibrational 
wave functions

2

ously [48] performed more detailed dissociation calculations
for vibrationally-excited H2 including all important pathways
to dissociation into neutral fragments from low to high inci-
dent energies. These calculations can be readily extended to
include the isotopologues in the future.

We first describe the standard treatment of dissociation,
which is a straightforward adaption of the method for non-
dissociative excitations. We use SI units throughout for con-
sistent comparison with TT01’s formulas. For simplicity, we
assume the AN approximation has been applied according to
the definitions in the review of electron-molecule collisions by
Lane [49], but note that the following discussion would remain
valid if the energy-balanced AN method [15] or even full elec-
tronic and vibrational close-coupling was used. In terms of
the electronic partial-wave T -matrix elements defined by Lane
[49], the expression for the energy-differential cross section for
dissociation of the vibrational level v into atomic fragments of
asymptotic kinetic energy Ek in the standard formulation is

d!

dEout
D "

k2
in

X
`0m0
`m

ˇ̌
h#Ek jT`0m0;`m.RI Ein/j#vi

ˇ̌2
; (2)

where Ein and kin are the incident projectile energy and
wavenumber, and # are the vibrational wave functions. The
convergence of Eq. (2) with respect to the maximum ` in-
cluded in the projectile plane-wave expansion is relatively fast
for the spin-exchange X 1†C

g ! b 3†C
u transition (previous

MCCC studies have found `max D 6 to be sufficient at all ener-
gies [4]). However, when the partial-wave method is applied
to direct (non-exchange) transitions, larger expansions are re-
quired, along with the analytical Born completion technique
to account for the infinity of terms ` > `max [4]. The energies
of the scattered electron and dissociating fragments are related
by

Ek D Ein ! Dv ! Eout; (3)

where Dv is the threshold dissociation energy of the vibrational
level v [15], and Eout is the outgoing projectile energy. This
relationship makes it possible to treat the energy-differential
cross section as a function of either Eout or Ek. When this
method has been applied in previous work [8–16, 18–24],
Eq. (2) is not derived explicitly for the case of dissociation
since the derivation follows exactly the same steps summarized
by Lane [49] for the non-dissociative vibrational-excitation
cross section. The only difference is the replacement of the
final bound vibrational wave function with an appropriately-
normalized continuum wave function #Ek.R/. In principle the
continuum normalization is arbitrary so long as the density of
final states is properly accounted for. According to standard
definitions [50], the density of states $ for the vibrational
continuum satisfies the following relation:

Z 1

0

#Ek.R/#Ek.R
0/$.Ek/ dEk D ı.R ! R0/; (4)

giving a clear relationship between the continuum-wave nor-
malization and density. Since the formulas presented by Lane

[49] for non-dissociative excitations are written in terms of
bound vibrational wave functions, with a density of states equal
to unity (by definition), the most straightforward adaption to
dissociation simply replaces them with continuum wave func-
tions normalized to have unit density as well. Indeed, many of
the previous works [13, 15, 21, 24, 51, 52] which have applied
the AN, rather than fixed-nuclei (FN), method to dissociation
explicitly state that the continuum wave functions are energy
normalized, which implies unit density and the following res-
olution of unity:

Z 1

0

#!
Ek.R/#Ek.R

0/ dEk D ı.R ! R0/: (5)

The works which have applied the FN method also implic-
itly assume energy normalization, since the FN approximation
utilizes Eq. (5) to integrate over the dissociative states analyt-
ically. Note that Eq. (5) implies the functions #Ek have di-
mensions of 1=

p
energy " length. The bound vibrational wave

functions are normalized according to
Z 1

0

#!
v .R/#v0.R/ dR D ıv0v; (6)

and hence they have dimensions of 1=
p

length. The electronic
T -matrix elements defined by Lane [49] are dimensionless,
and the integration over R implied by the bra-kets in Eq. (2)
cancels the combined dimension of 1=length from the vibra-
tional wave functions, so it is evident that the right-hand side
of Eq. (2) has dimensions of area=energy as required (note that
1=k2

in has dimensions of area).
The standard approach to calculating dissociation cross sec-

tions has been applied extensively in the literature [8–24]. It
is also consistent with well-established methods for comput-
ing bound-continuum radiative lifetimes or photodissociation
cross sections, which replace discrete final states with disso-
ciative vibrational wave functions. The latter are either energy
normalized [53], or normalized to unit asymptotic amplitude
with the energy-normalization factor included explicitly in the
dipole matrix-element formulas [54, 55].

TT01 criticized the standard technique, claiming that a
proper theoretical formulation for dissociation did not exist,
and suggested that a more rigorous derivation for the specific
case where there are three fragments in the exit channels is
required. We have performed our own derivation following
the ideas laid out by TT01 and found that they lead directly
to Eq. (2). However, TT01 arrived at an expression which is
markedly different:

d!

dEout
D mH

4"3me

Ek

Ein

X
`0m0
`m

ˇ̌
h#Ek jT`0m0;`m.RI Ein/j#vi

ˇ̌2
: (7)

Here mH is the hydrogen nuclear mass, which is replaced
with the deuteron or triton mass in their later investigation
into dissociation of D2 and T2 [27]. Comparing Eqs. (2)
and (7), we see that TT01’s formula is different by a factor
of mHEk=2"4„2 (the T -matrix elements here are the same
as those in Eq. (2)). The distinguishing feature of TT01’s

Trevisan and Tennyson (J. Phys. B 34 (2001) 2935-2949) 
derived a different formula:

• Explicit mass dependence – cross sections 
scale with mass

• Explicit dependence on the energy of the 
dissociating fragments Ek

• Formula was applied in R-matrix calculations 
of H2 dissociation cross sections which are 
widely used in plasma modelling applications
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Isotopic and vibrational-level dependence 
of H2 dissociation by electron impact

2

ously [48] performed more detailed dissociation calculations
for vibrationally-excited H2 including all important pathways
to dissociation into neutral fragments from low to high inci-
dent energies. These calculations can be readily extended to
include the isotopologues in the future.

We first describe the standard treatment of dissociation,
which is a straightforward adaption of the method for non-
dissociative excitations. We use SI units throughout for con-
sistent comparison with TT01’s formulas. For simplicity, we
assume the AN approximation has been applied according to
the definitions in the review of electron-molecule collisions by
Lane [49], but note that the following discussion would remain
valid if the energy-balanced AN method [15] or even full elec-
tronic and vibrational close-coupling was used. In terms of
the electronic partial-wave T -matrix elements defined by Lane
[49], the expression for the energy-differential cross section for
dissociation of the vibrational level v into atomic fragments of
asymptotic kinetic energy Ek in the standard formulation is

d!

dEout
D "

k2
in

X
`0m0
`m

ˇ̌
h#Ek jT`0m0;`m.RI Ein/j#vi

ˇ̌2
; (2)

where Ein and kin are the incident projectile energy and
wavenumber, and # are the vibrational wave functions. The
convergence of Eq. (2) with respect to the maximum ` in-
cluded in the projectile plane-wave expansion is relatively fast
for the spin-exchange X 1†C

g ! b 3†C
u transition (previous

MCCC studies have found `max D 6 to be sufficient at all ener-
gies [4]). However, when the partial-wave method is applied
to direct (non-exchange) transitions, larger expansions are re-
quired, along with the analytical Born completion technique
to account for the infinity of terms ` > `max [4]. The energies
of the scattered electron and dissociating fragments are related
by

Ek D Ein ! Dv ! Eout; (3)

where Dv is the threshold dissociation energy of the vibrational
level v [15], and Eout is the outgoing projectile energy. This
relationship makes it possible to treat the energy-differential
cross section as a function of either Eout or Ek. When this
method has been applied in previous work [8–16, 18–24],
Eq. (2) is not derived explicitly for the case of dissociation
since the derivation follows exactly the same steps summarized
by Lane [49] for the non-dissociative vibrational-excitation
cross section. The only difference is the replacement of the
final bound vibrational wave function with an appropriately-
normalized continuum wave function #Ek.R/. In principle the
continuum normalization is arbitrary so long as the density of
final states is properly accounted for. According to standard
definitions [50], the density of states $ for the vibrational
continuum satisfies the following relation:

Z 1

0

#Ek.R/#Ek.R
0/$.Ek/ dEk D ı.R ! R0/; (4)

giving a clear relationship between the continuum-wave nor-
malization and density. Since the formulas presented by Lane

[49] for non-dissociative excitations are written in terms of
bound vibrational wave functions, with a density of states equal
to unity (by definition), the most straightforward adaption to
dissociation simply replaces them with continuum wave func-
tions normalized to have unit density as well. Indeed, many of
the previous works [13, 15, 21, 24, 51, 52] which have applied
the AN, rather than fixed-nuclei (FN), method to dissociation
explicitly state that the continuum wave functions are energy
normalized, which implies unit density and the following res-
olution of unity:

Z 1

0

#!
Ek.R/#Ek.R

0/ dEk D ı.R ! R0/: (5)

The works which have applied the FN method also implic-
itly assume energy normalization, since the FN approximation
utilizes Eq. (5) to integrate over the dissociative states analyt-
ically. Note that Eq. (5) implies the functions #Ek have di-
mensions of 1=

p
energy " length. The bound vibrational wave

functions are normalized according to
Z 1

0

#!
v .R/#v0.R/ dR D ıv0v; (6)

and hence they have dimensions of 1=
p

length. The electronic
T -matrix elements defined by Lane [49] are dimensionless,
and the integration over R implied by the bra-kets in Eq. (2)
cancels the combined dimension of 1=length from the vibra-
tional wave functions, so it is evident that the right-hand side
of Eq. (2) has dimensions of area=energy as required (note that
1=k2

in has dimensions of area).
The standard approach to calculating dissociation cross sec-

tions has been applied extensively in the literature [8–24]. It
is also consistent with well-established methods for comput-
ing bound-continuum radiative lifetimes or photodissociation
cross sections, which replace discrete final states with disso-
ciative vibrational wave functions. The latter are either energy
normalized [53], or normalized to unit asymptotic amplitude
with the energy-normalization factor included explicitly in the
dipole matrix-element formulas [54, 55].

TT01 criticized the standard technique, claiming that a
proper theoretical formulation for dissociation did not exist,
and suggested that a more rigorous derivation for the specific
case where there are three fragments in the exit channels is
required. We have performed our own derivation following
the ideas laid out by TT01 and found that they lead directly
to Eq. (2). However, TT01 arrived at an expression which is
markedly different:

d!

dEout
D mH

4"3me

Ek

Ein

X
`0m0
`m

ˇ̌
h#Ek jT`0m0;`m.RI Ein/j#vi

ˇ̌2
: (7)

Here mH is the hydrogen nuclear mass, which is replaced
with the deuteron or triton mass in their later investigation
into dissociation of D2 and T2 [27]. Comparing Eqs. (2)
and (7), we see that TT01’s formula is different by a factor
of mHEk=2"4„2 (the T -matrix elements here are the same
as those in Eq. (2)). The distinguishing feature of TT01’s

Standard formula to calculate energy-differential cross 
section for dissociation (used in MCCC): 

2

ously [48] performed more detailed dissociation calculations
for vibrationally-excited H2 including all important pathways
to dissociation into neutral fragments from low to high inci-
dent energies. These calculations can be readily extended to
include the isotopologues in the future.

We first describe the standard treatment of dissociation,
which is a straightforward adaption of the method for non-
dissociative excitations. We use SI units throughout for con-
sistent comparison with TT01’s formulas. For simplicity, we
assume the AN approximation has been applied according to
the definitions in the review of electron-molecule collisions by
Lane [49], but note that the following discussion would remain
valid if the energy-balanced AN method [15] or even full elec-
tronic and vibrational close-coupling was used. In terms of
the electronic partial-wave T -matrix elements defined by Lane
[49], the expression for the energy-differential cross section for
dissociation of the vibrational level v into atomic fragments of
asymptotic kinetic energy Ek in the standard formulation is

d!

dEout
D "

k2
in

X
`0m0
`m

ˇ̌
h#Ek jT`0m0;`m.RI Ein/j#vi

ˇ̌2
; (2)

where Ein and kin are the incident projectile energy and
wavenumber, and # are the vibrational wave functions. The
convergence of Eq. (2) with respect to the maximum ` in-
cluded in the projectile plane-wave expansion is relatively fast
for the spin-exchange X 1†C

g ! b 3†C
u transition (previous

MCCC studies have found `max D 6 to be sufficient at all ener-
gies [4]). However, when the partial-wave method is applied
to direct (non-exchange) transitions, larger expansions are re-
quired, along with the analytical Born completion technique
to account for the infinity of terms ` > `max [4]. The energies
of the scattered electron and dissociating fragments are related
by

Ek D Ein ! Dv ! Eout; (3)

where Dv is the threshold dissociation energy of the vibrational
level v [15], and Eout is the outgoing projectile energy. This
relationship makes it possible to treat the energy-differential
cross section as a function of either Eout or Ek. When this
method has been applied in previous work [8–16, 18–24],
Eq. (2) is not derived explicitly for the case of dissociation
since the derivation follows exactly the same steps summarized
by Lane [49] for the non-dissociative vibrational-excitation
cross section. The only difference is the replacement of the
final bound vibrational wave function with an appropriately-
normalized continuum wave function #Ek.R/. In principle the
continuum normalization is arbitrary so long as the density of
final states is properly accounted for. According to standard
definitions [50], the density of states $ for the vibrational
continuum satisfies the following relation:

Z 1

0

#Ek.R/#Ek.R
0/$.Ek/ dEk D ı.R ! R0/; (4)

giving a clear relationship between the continuum-wave nor-
malization and density. Since the formulas presented by Lane

[49] for non-dissociative excitations are written in terms of
bound vibrational wave functions, with a density of states equal
to unity (by definition), the most straightforward adaption to
dissociation simply replaces them with continuum wave func-
tions normalized to have unit density as well. Indeed, many of
the previous works [13, 15, 21, 24, 51, 52] which have applied
the AN, rather than fixed-nuclei (FN), method to dissociation
explicitly state that the continuum wave functions are energy
normalized, which implies unit density and the following res-
olution of unity:

Z 1

0

#!
Ek.R/#Ek.R

0/ dEk D ı.R ! R0/: (5)

The works which have applied the FN method also implic-
itly assume energy normalization, since the FN approximation
utilizes Eq. (5) to integrate over the dissociative states analyt-
ically. Note that Eq. (5) implies the functions #Ek have di-
mensions of 1=

p
energy " length. The bound vibrational wave

functions are normalized according to
Z 1

0

#!
v .R/#v0.R/ dR D ıv0v; (6)

and hence they have dimensions of 1=
p

length. The electronic
T -matrix elements defined by Lane [49] are dimensionless,
and the integration over R implied by the bra-kets in Eq. (2)
cancels the combined dimension of 1=length from the vibra-
tional wave functions, so it is evident that the right-hand side
of Eq. (2) has dimensions of area=energy as required (note that
1=k2

in has dimensions of area).
The standard approach to calculating dissociation cross sec-

tions has been applied extensively in the literature [8–24]. It
is also consistent with well-established methods for comput-
ing bound-continuum radiative lifetimes or photodissociation
cross sections, which replace discrete final states with disso-
ciative vibrational wave functions. The latter are either energy
normalized [53], or normalized to unit asymptotic amplitude
with the energy-normalization factor included explicitly in the
dipole matrix-element formulas [54, 55].

TT01 criticized the standard technique, claiming that a
proper theoretical formulation for dissociation did not exist,
and suggested that a more rigorous derivation for the specific
case where there are three fragments in the exit channels is
required. We have performed our own derivation following
the ideas laid out by TT01 and found that they lead directly
to Eq. (2). However, TT01 arrived at an expression which is
markedly different:
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4"3me

Ek
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X
`0m0
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ˇ̌
h#Ek jT`0m0;`m.RI Ein/j#vi

ˇ̌2
: (7)

Here mH is the hydrogen nuclear mass, which is replaced
with the deuteron or triton mass in their later investigation
into dissociation of D2 and T2 [27]. Comparing Eqs. (2)
and (7), we see that TT01’s formula is different by a factor
of mHEk=2"4„2 (the T -matrix elements here are the same
as those in Eq. (2)). The distinguishing feature of TT01’s

Trevisan and Tennyson (J. Phys. B 34 (2001) 2935-2949) 
derived a different formula:

• Explicit mass dependence – cross sections 
scale with mass

• Explicit dependence on the energy of the 
dissociating fragments Ek

• Formula was applied in R-matrix calculations 
of H2 dissociation cross sections which are 
widely used in plasma modelling applications
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Isotopic and vibrational-level dependence 
of H2 dissociation by electron impact

2

ously [48] performed more detailed dissociation calculations
for vibrationally-excited H2 including all important pathways
to dissociation into neutral fragments from low to high inci-
dent energies. These calculations can be readily extended to
include the isotopologues in the future.

We first describe the standard treatment of dissociation,
which is a straightforward adaption of the method for non-
dissociative excitations. We use SI units throughout for con-
sistent comparison with TT01’s formulas. For simplicity, we
assume the AN approximation has been applied according to
the definitions in the review of electron-molecule collisions by
Lane [49], but note that the following discussion would remain
valid if the energy-balanced AN method [15] or even full elec-
tronic and vibrational close-coupling was used. In terms of
the electronic partial-wave T -matrix elements defined by Lane
[49], the expression for the energy-differential cross section for
dissociation of the vibrational level v into atomic fragments of
asymptotic kinetic energy Ek in the standard formulation is
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dEout
D "

k2
in

X
`0m0
`m

ˇ̌
h#Ek jT`0m0;`m.RI Ein/j#vi

ˇ̌2
; (2)

where Ein and kin are the incident projectile energy and
wavenumber, and # are the vibrational wave functions. The
convergence of Eq. (2) with respect to the maximum ` in-
cluded in the projectile plane-wave expansion is relatively fast
for the spin-exchange X 1†C

g ! b 3†C
u transition (previous

MCCC studies have found `max D 6 to be sufficient at all ener-
gies [4]). However, when the partial-wave method is applied
to direct (non-exchange) transitions, larger expansions are re-
quired, along with the analytical Born completion technique
to account for the infinity of terms ` > `max [4]. The energies
of the scattered electron and dissociating fragments are related
by

Ek D Ein ! Dv ! Eout; (3)

where Dv is the threshold dissociation energy of the vibrational
level v [15], and Eout is the outgoing projectile energy. This
relationship makes it possible to treat the energy-differential
cross section as a function of either Eout or Ek. When this
method has been applied in previous work [8–16, 18–24],
Eq. (2) is not derived explicitly for the case of dissociation
since the derivation follows exactly the same steps summarized
by Lane [49] for the non-dissociative vibrational-excitation
cross section. The only difference is the replacement of the
final bound vibrational wave function with an appropriately-
normalized continuum wave function #Ek.R/. In principle the
continuum normalization is arbitrary so long as the density of
final states is properly accounted for. According to standard
definitions [50], the density of states $ for the vibrational
continuum satisfies the following relation:

Z 1

0

#Ek.R/#Ek.R
0/$.Ek/ dEk D ı.R ! R0/; (4)

giving a clear relationship between the continuum-wave nor-
malization and density. Since the formulas presented by Lane

[49] for non-dissociative excitations are written in terms of
bound vibrational wave functions, with a density of states equal
to unity (by definition), the most straightforward adaption to
dissociation simply replaces them with continuum wave func-
tions normalized to have unit density as well. Indeed, many of
the previous works [13, 15, 21, 24, 51, 52] which have applied
the AN, rather than fixed-nuclei (FN), method to dissociation
explicitly state that the continuum wave functions are energy
normalized, which implies unit density and the following res-
olution of unity:

Z 1

0

#!
Ek.R/#Ek.R

0/ dEk D ı.R ! R0/: (5)

The works which have applied the FN method also implic-
itly assume energy normalization, since the FN approximation
utilizes Eq. (5) to integrate over the dissociative states analyt-
ically. Note that Eq. (5) implies the functions #Ek have di-
mensions of 1=

p
energy " length. The bound vibrational wave

functions are normalized according to
Z 1

0

#!
v .R/#v0.R/ dR D ıv0v; (6)

and hence they have dimensions of 1=
p

length. The electronic
T -matrix elements defined by Lane [49] are dimensionless,
and the integration over R implied by the bra-kets in Eq. (2)
cancels the combined dimension of 1=length from the vibra-
tional wave functions, so it is evident that the right-hand side
of Eq. (2) has dimensions of area=energy as required (note that
1=k2

in has dimensions of area).
The standard approach to calculating dissociation cross sec-

tions has been applied extensively in the literature [8–24]. It
is also consistent with well-established methods for comput-
ing bound-continuum radiative lifetimes or photodissociation
cross sections, which replace discrete final states with disso-
ciative vibrational wave functions. The latter are either energy
normalized [53], or normalized to unit asymptotic amplitude
with the energy-normalization factor included explicitly in the
dipole matrix-element formulas [54, 55].

TT01 criticized the standard technique, claiming that a
proper theoretical formulation for dissociation did not exist,
and suggested that a more rigorous derivation for the specific
case where there are three fragments in the exit channels is
required. We have performed our own derivation following
the ideas laid out by TT01 and found that they lead directly
to Eq. (2). However, TT01 arrived at an expression which is
markedly different:
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Here mH is the hydrogen nuclear mass, which is replaced
with the deuteron or triton mass in their later investigation
into dissociation of D2 and T2 [27]. Comparing Eqs. (2)
and (7), we see that TT01’s formula is different by a factor
of mHEk=2"4„2 (the T -matrix elements here are the same
as those in Eq. (2)). The distinguishing feature of TT01’s
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ously [48] performed more detailed dissociation calculations
for vibrationally-excited H2 including all important pathways
to dissociation into neutral fragments from low to high inci-
dent energies. These calculations can be readily extended to
include the isotopologues in the future.

We first describe the standard treatment of dissociation,
which is a straightforward adaption of the method for non-
dissociative excitations. We use SI units throughout for con-
sistent comparison with TT01’s formulas. For simplicity, we
assume the AN approximation has been applied according to
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Lane [49], but note that the following discussion would remain
valid if the energy-balanced AN method [15] or even full elec-
tronic and vibrational close-coupling was used. In terms of
the electronic partial-wave T -matrix elements defined by Lane
[49], the expression for the energy-differential cross section for
dissociation of the vibrational level v into atomic fragments of
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where Ein and kin are the incident projectile energy and
wavenumber, and # are the vibrational wave functions. The
convergence of Eq. (2) with respect to the maximum ` in-
cluded in the projectile plane-wave expansion is relatively fast
for the spin-exchange X 1†C

g ! b 3†C
u transition (previous

MCCC studies have found `max D 6 to be sufficient at all ener-
gies [4]). However, when the partial-wave method is applied
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quired, along with the analytical Born completion technique
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by

Ek D Ein ! Dv ! Eout; (3)
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cross section as a function of either Eout or Ek. When this
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since the derivation follows exactly the same steps summarized
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cross section. The only difference is the replacement of the
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normalized continuum wave function #Ek.R/. In principle the
continuum normalization is arbitrary so long as the density of
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continuum satisfies the following relation:
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to unity (by definition), the most straightforward adaption to
dissociation simply replaces them with continuum wave func-
tions normalized to have unit density as well. Indeed, many of
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cancels the combined dimension of 1=length from the vibra-
tional wave functions, so it is evident that the right-hand side
of Eq. (2) has dimensions of area=energy as required (note that
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in has dimensions of area).
The standard approach to calculating dissociation cross sec-

tions has been applied extensively in the literature [8–24]. It
is also consistent with well-established methods for comput-
ing bound-continuum radiative lifetimes or photodissociation
cross sections, which replace discrete final states with disso-
ciative vibrational wave functions. The latter are either energy
normalized [53], or normalized to unit asymptotic amplitude
with the energy-normalization factor included explicitly in the
dipole matrix-element formulas [54, 55].

TT01 criticized the standard technique, claiming that a
proper theoretical formulation for dissociation did not exist,
and suggested that a more rigorous derivation for the specific
case where there are three fragments in the exit channels is
required. We have performed our own derivation following
the ideas laid out by TT01 and found that they lead directly
to Eq. (2). However, TT01 arrived at an expression which is
markedly different:
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Here mH is the hydrogen nuclear mass, which is replaced
with the deuteron or triton mass in their later investigation
into dissociation of D2 and T2 [27]. Comparing Eqs. (2)
and (7), we see that TT01’s formula is different by a factor
of mHEk=2"4„2 (the T -matrix elements here are the same
as those in Eq. (2)). The distinguishing feature of TT01’s

Trevisan and Tennyson (J. Phys. B 34 (2001) 2935-2949) 
derived a different formula:

• Explicit mass dependence – cross sections 
scale with mass

• Explicit dependence on the energy of the 
dissociating fragments Ek

• Formula was applied in R-matrix calculations 
of H2 dissociation cross sections which are 
widely used in plasma modelling applications
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Isotopic and vibrational-level dependence 
of H2 dissociation by electron impact
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ously [48] performed more detailed dissociation calculations
for vibrationally-excited H2 including all important pathways
to dissociation into neutral fragments from low to high inci-
dent energies. These calculations can be readily extended to
include the isotopologues in the future.

We first describe the standard treatment of dissociation,
which is a straightforward adaption of the method for non-
dissociative excitations. We use SI units throughout for con-
sistent comparison with TT01’s formulas. For simplicity, we
assume the AN approximation has been applied according to
the definitions in the review of electron-molecule collisions by
Lane [49], but note that the following discussion would remain
valid if the energy-balanced AN method [15] or even full elec-
tronic and vibrational close-coupling was used. In terms of
the electronic partial-wave T -matrix elements defined by Lane
[49], the expression for the energy-differential cross section for
dissociation of the vibrational level v into atomic fragments of
asymptotic kinetic energy Ek in the standard formulation is
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where Ein and kin are the incident projectile energy and
wavenumber, and # are the vibrational wave functions. The
convergence of Eq. (2) with respect to the maximum ` in-
cluded in the projectile plane-wave expansion is relatively fast
for the spin-exchange X 1†C

g ! b 3†C
u transition (previous

MCCC studies have found `max D 6 to be sufficient at all ener-
gies [4]). However, when the partial-wave method is applied
to direct (non-exchange) transitions, larger expansions are re-
quired, along with the analytical Born completion technique
to account for the infinity of terms ` > `max [4]. The energies
of the scattered electron and dissociating fragments are related
by

Ek D Ein ! Dv ! Eout; (3)

where Dv is the threshold dissociation energy of the vibrational
level v [15], and Eout is the outgoing projectile energy. This
relationship makes it possible to treat the energy-differential
cross section as a function of either Eout or Ek. When this
method has been applied in previous work [8–16, 18–24],
Eq. (2) is not derived explicitly for the case of dissociation
since the derivation follows exactly the same steps summarized
by Lane [49] for the non-dissociative vibrational-excitation
cross section. The only difference is the replacement of the
final bound vibrational wave function with an appropriately-
normalized continuum wave function #Ek.R/. In principle the
continuum normalization is arbitrary so long as the density of
final states is properly accounted for. According to standard
definitions [50], the density of states $ for the vibrational
continuum satisfies the following relation:
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giving a clear relationship between the continuum-wave nor-
malization and density. Since the formulas presented by Lane

[49] for non-dissociative excitations are written in terms of
bound vibrational wave functions, with a density of states equal
to unity (by definition), the most straightforward adaption to
dissociation simply replaces them with continuum wave func-
tions normalized to have unit density as well. Indeed, many of
the previous works [13, 15, 21, 24, 51, 52] which have applied
the AN, rather than fixed-nuclei (FN), method to dissociation
explicitly state that the continuum wave functions are energy
normalized, which implies unit density and the following res-
olution of unity:
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The works which have applied the FN method also implic-
itly assume energy normalization, since the FN approximation
utilizes Eq. (5) to integrate over the dissociative states analyt-
ically. Note that Eq. (5) implies the functions #Ek have di-
mensions of 1=
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and hence they have dimensions of 1=
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length. The electronic
T -matrix elements defined by Lane [49] are dimensionless,
and the integration over R implied by the bra-kets in Eq. (2)
cancels the combined dimension of 1=length from the vibra-
tional wave functions, so it is evident that the right-hand side
of Eq. (2) has dimensions of area=energy as required (note that
1=k2

in has dimensions of area).
The standard approach to calculating dissociation cross sec-

tions has been applied extensively in the literature [8–24]. It
is also consistent with well-established methods for comput-
ing bound-continuum radiative lifetimes or photodissociation
cross sections, which replace discrete final states with disso-
ciative vibrational wave functions. The latter are either energy
normalized [53], or normalized to unit asymptotic amplitude
with the energy-normalization factor included explicitly in the
dipole matrix-element formulas [54, 55].

TT01 criticized the standard technique, claiming that a
proper theoretical formulation for dissociation did not exist,
and suggested that a more rigorous derivation for the specific
case where there are three fragments in the exit channels is
required. We have performed our own derivation following
the ideas laid out by TT01 and found that they lead directly
to Eq. (2). However, TT01 arrived at an expression which is
markedly different:
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Here mH is the hydrogen nuclear mass, which is replaced
with the deuteron or triton mass in their later investigation
into dissociation of D2 and T2 [27]. Comparing Eqs. (2)
and (7), we see that TT01’s formula is different by a factor
of mHEk=2"4„2 (the T -matrix elements here are the same
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dent energies. These calculations can be readily extended to
include the isotopologues in the future.

We first describe the standard treatment of dissociation,
which is a straightforward adaption of the method for non-
dissociative excitations. We use SI units throughout for con-
sistent comparison with TT01’s formulas. For simplicity, we
assume the AN approximation has been applied according to
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Lane [49], but note that the following discussion would remain
valid if the energy-balanced AN method [15] or even full elec-
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where Ein and kin are the incident projectile energy and
wavenumber, and # are the vibrational wave functions. The
convergence of Eq. (2) with respect to the maximum ` in-
cluded in the projectile plane-wave expansion is relatively fast
for the spin-exchange X 1†C

g ! b 3†C
u transition (previous

MCCC studies have found `max D 6 to be sufficient at all ener-
gies [4]). However, when the partial-wave method is applied
to direct (non-exchange) transitions, larger expansions are re-
quired, along with the analytical Born completion technique
to account for the infinity of terms ` > `max [4]. The energies
of the scattered electron and dissociating fragments are related
by

Ek D Ein ! Dv ! Eout; (3)

where Dv is the threshold dissociation energy of the vibrational
level v [15], and Eout is the outgoing projectile energy. This
relationship makes it possible to treat the energy-differential
cross section as a function of either Eout or Ek. When this
method has been applied in previous work [8–16, 18–24],
Eq. (2) is not derived explicitly for the case of dissociation
since the derivation follows exactly the same steps summarized
by Lane [49] for the non-dissociative vibrational-excitation
cross section. The only difference is the replacement of the
final bound vibrational wave function with an appropriately-
normalized continuum wave function #Ek.R/. In principle the
continuum normalization is arbitrary so long as the density of
final states is properly accounted for. According to standard
definitions [50], the density of states $ for the vibrational
continuum satisfies the following relation:
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malization and density. Since the formulas presented by Lane

[49] for non-dissociative excitations are written in terms of
bound vibrational wave functions, with a density of states equal
to unity (by definition), the most straightforward adaption to
dissociation simply replaces them with continuum wave func-
tions normalized to have unit density as well. Indeed, many of
the previous works [13, 15, 21, 24, 51, 52] which have applied
the AN, rather than fixed-nuclei (FN), method to dissociation
explicitly state that the continuum wave functions are energy
normalized, which implies unit density and the following res-
olution of unity:
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The works which have applied the FN method also implic-
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ically. Note that Eq. (5) implies the functions #Ek have di-
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and the integration over R implied by the bra-kets in Eq. (2)
cancels the combined dimension of 1=length from the vibra-
tional wave functions, so it is evident that the right-hand side
of Eq. (2) has dimensions of area=energy as required (note that
1=k2

in has dimensions of area).
The standard approach to calculating dissociation cross sec-

tions has been applied extensively in the literature [8–24]. It
is also consistent with well-established methods for comput-
ing bound-continuum radiative lifetimes or photodissociation
cross sections, which replace discrete final states with disso-
ciative vibrational wave functions. The latter are either energy
normalized [53], or normalized to unit asymptotic amplitude
with the energy-normalization factor included explicitly in the
dipole matrix-element formulas [54, 55].

TT01 criticized the standard technique, claiming that a
proper theoretical formulation for dissociation did not exist,
and suggested that a more rigorous derivation for the specific
case where there are three fragments in the exit channels is
required. We have performed our own derivation following
the ideas laid out by TT01 and found that they lead directly
to Eq. (2). However, TT01 arrived at an expression which is
markedly different:
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Here mH is the hydrogen nuclear mass, which is replaced
with the deuteron or triton mass in their later investigation
into dissociation of D2 and T2 [27]. Comparing Eqs. (2)
and (7), we see that TT01’s formula is different by a factor
of mHEk=2"4„2 (the T -matrix elements here are the same
as those in Eq. (2)). The distinguishing feature of TT01’s
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The low-energy electron-impact dissociation of molecular hydrogen has been a source of disagreement
between various calculations and measurements for decades. Excitation of the ground state of H2 into the
dissociative b 3!+

u state is now well understood, with the most recent measurements being in excellent agreement
with the molecular convergent close-coupling (MCCC) calculations of both integral and differential cross
sections [Zawadzki et al., Phys. Rev. A 98, 062704 (2018)]. However, in the absence of similar measurements
for vibrationally excited or isotopically substituted H2, cross sections for dissociation of these species must
be determined by theory alone. We have identified large discrepancies between MCCC calculations and the
recommended R-matrix cross sections for dissociation of vibrationally excited H2, D2, T2, HD, HT, and DT
[Trevisan et al., Plasma Phys. Contr. Fusion 44 1263 (2002); 44, 2217 (2002)], with disagreement in both the
isotope effect and dependence on initial vibrational level. Here we investigate the source of the discrepancies,
and discuss the consequences for plasma models, which have incorporated the previously recommended data.
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In low-temperature plasmas, electron-impact dissociation
of molecular hydrogen into neutral fragments proceeds almost
exclusively via excitation of the dissociative b 3!+

u state:

e− + H2(X 1!+
g , v) → H2(b 3!+

u ) + e− → 2H + e−. (1)

Cross sections and rate coefficients for this process are needed
to accurately model astrophysical, scientific, and technologi-
cal plasmas where hydrogen is present in its molecular form
[1– 3]. The importance of the reaction (1) and the relative sim-
plicity it presents to theory and experiment has led to it being
one of the most studied processes in electron-molecule scat-
tering. Despite this, for decades there was no clear agreement
between any theoretically or experimentally determined cross
sections. The molecular convergent close-coupling (MCCC)
calculations [4] for scattering on the ground vibrational level
(v = 0) of H2 were up to a factor of two smaller than the
recommended cross sections, but the situation was resolved
when newer measurements were found to be in near-perfect
agreement with the MCCC results [5,6]. Recent R-matrix cal-
culations have also confirmed the MCCC results for scattering
on the v = 0 level of H2 [7].

It is also important to determine accurate cross sections
for dissociation of vibrationally excited and isotopically sub-
stituted hydrogen molecules, due to their presence in fusion
and astrophysical plasmas. For these species, however, the
absence of experimental data means it is up to theory to make
recommendations alone. The primary distinguishing factor
between the numerous calculations of the b 3!+

u -state cross
section [8– 24] is the treatment of the electronic dynamics.
There is generally a consensus in the literature that the nuclear

*liam.scarlett@postgrad.curtin.edu.au

dynamics of the dissociative transition can be treated with
the same formalism used for bound excitations, by simply
replacing the bound final vibrational wave function with an
appropriately normalized dissociative wave function. We have
taken this approach previously to study the dissociation of
vibrationally excited H+

2 and its isotopologues, finding good
agreement with measurements of both integral and energy-
differential (kinetic-energy-release) cross sections [20,21].

The cross sections for dissociation of vibrationally excited
H2, HD, and D2 recommended in the well-known reviews
of Yoon et al. [25,26] come from the R-matrix calculations
of Trevisan and Tennyson [27,28] (hereafter referred to col-
lectively as TT02). The results of TT02, which also include
HT, DT, and T2, have long been considered the most accurate
dissociation cross sections for H2 and its isotopologues, and
are widely used in applications. During our recent efforts to
compile a comprehensive set of vibrationally resolved cross
sections for electrons scattering on vibrationally excited and
isotopically substituted H2 [29,30], it has become apparent
that there are major discrepancies between the MCCC calcu-
lations and the R-matrix calculations of TT02. Interestingly,
the two methods are similar in their treatment of both the
electronic and nuclear dynamics, but differ in their funda-
mental definitions of the dissociation cross section, leading to
conflicting isotopic and vibrational-level dependencies in the
calculations. The formalism applied by TT02 was previously
developed by Trevisan and Tennyson [17] (TT01).

Here we compare the standard method adopted in the
MCCC calculations with the alternative formulation sug-
gested by TT01, and determine the origin of the disagreement
between the two approaches. It is important to note that this
paper is not concerned with analyzing the validity of the
often-used adiabatic-nuclei (AN) approximation, or variants
such as the energy-balanced AN approximation of Stibbe and
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• In the paper we show that Trevisan and Tennyson’s approach to deriving the 
dissociation cross section leads to the standard formula

• The differences in their formula are due to errors in the derivation
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• Large-scale close-coupling calculations for H2 : produced a comprehensive dataset of e--H2
vibrationally resolved excitation cross sections: from the ground to n=2,3 excited electronic 
states, isotopically resolved dataset.

• Collisional Radiative Model for the triplet system of molecular hydrogen: using MCCC cross 
sections

• Produced a set of cross sections for H2 transitions between electronically excited states

• Identified & resolved a major discrepancy for the isotopic and vibrational-level dependence of 
H2 dissociation by electron impact

• In preparation:  

- detailed data set of vibrationally resolved cross sections for H2 for transitions between   
electronically excited states,  +  isotopologues (D2, HD, …) 

- rotationally-resolved electron scattering on H2 +  isotopologues (D2, HD, …)
rovibrationally resolved cross sections 
polarization of radiation in Fulcher-a band emission (d3→a3 )

- vibrational close-coupling technique with exact account of coupling to electronic degrees of

freedom
• Results available from LXCat and IAEA databases  and MCCC database (mccc-db.org)

Conclusions

Thank you
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