Tungsten atomic data needs for ITER

X. Bonnin

ITER Organization

with contributions from

Z. Cheng (IO), A. Loarte (IO), J.-S. Park (IO/KAIST), S. Pinches (IO), R. Pitts (IO), D. Harting (CCFE/FZJ), N. Horsten (CCFE/Aalto U.), D. Reiter (FZJ/U. Düsseldorf)

Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

 IAEA TCM on A&M Tungsten Data, 29 March – 1 April 2021
 IDM UID: 52DP9P
 Page 1

 iter china eu india japan korea russia usa
 © 2021, ITER Organization
 IDM UID: 52DP9P
 Page 1

Categories of W data needed for ITER

- For plasma modelling and diagnostics:
 - Ionization and CX data for low ionization stages \rightarrow Prompt redeposition rates
 - What spectral lines can be used to monitor the W content of the plasma?
 - W migration to main plasma: thermal and friction forces
 - Are charge bundling or average-ion simple models useful?
 - Sputtering and reflection yields for bulk/recrystallized/redeposited W
 - Effects of Be_xW alloying, other impurities, surface roughness, surface state, temperature, ...
 - Vapour shielding during fast transients
- For materials modelling, including fuel retention issues:
 - Nature of hydrogen/helium traps in bulk W
 - Vacancy formation and diffusion rates
 - Blistering, cracking, fatigue, grain boundaries
 - IR emissivity, melting, evaporation
 - Not covered here!

IAEA TCM on A&M Tungsten Data, 29 March – 1 April 2021 © 2021, ITER Organization

Diagnostic measurements requirements

UID: WYWUMX

- [55E3s1408-R] MP027, W Influx shall be delivered with the following specifications:
- ➢ Range: 10¹⁴ − 5.10¹⁷ m⁻².s⁻¹
- ➤ Time Resolution: 10 ms
- Spatial Resolution: integral
- > Accuracy*: 10% relative
- Diagnostics contributing:
 - 55.E2 H-Alpha (+ visible spectroscopy) Primary
 - > 55.E3 VUV (Main Plasma) Supplementary
 - > 55.ED X-Ray Crystal Spectrometer (survey) Primary
 - > 55.G1 IR Cameras, Vis/IR TV (Midplane) Supplementary
 - > 55.GA IR Cameras: Vis/IR TV (Upper) Supplementary

[55E3s1409-R] MP028, W Relative Concentration shall be delivered with the following specifications:

- ➢ Range: 10⁻⁶ − 5.10⁻⁴
- Time Resolution: 10 ms
- Spatial Resolution: integral
- ➤ Accuracy*: 10% relative
- Diagnostics contributing:
 - > 55.E3 VUV (Main Plasma) Primary
 - > 55.ED X-Ray Crystal Spectrometer (survey) Primary

* Accuracy means measurement accuracy of impurity emission line itself (unit: photon/cm².s) and not density accuracy.

	IAEA TCM on A&M Tungsten Data, 29 March – 1 April 2021	Page 3
ter china eu india japan korea russia usa	© 2021, ITER Organization	i age o

Diagnostic spectral ranges

- 55.E2: Visible spectroscopy: Will look at W⁰ 400.9 nm line with long integration times (>1s) and use the S/XB method (uncertainty quoted > 500%) (UID: TWRHG4)
- 55.E3: VUV spectrometer (main plasma) : 2.4 160 nm range, (W⁺⁴⁶ 19.6 nm and W⁺⁴⁴ 132.3 nm) (UID: 4BDN4T) ^[1]
- 55.EH: VUV spectrometer (edge): 17 32 nm
- 55.EG: VUV spectrometer (divertor): 15 32 nm
- 55.ED: X-Ray Crystal Survey Spectrometer (1-100 Å) (UID: SCSNQ3)
- 55.E4: Divertor Impurity Monitor (200 1000 nm) with dedicated hardware for the W⁰ 400.9 nm line (UID: RYRFCU)

[1] R. Barnsley and M. O'Mullane, Rev. Sci. Instr. 75, 3743 (2004)

Important lines for VUV spectrometer (UID: 4BY2W7)

lon	Wavelength (nm)	Rel. intensity	A _{ki} (×10 ⁸ s ⁻¹)	f _{ik} (×10 ⁻³)	S _{ik} (a.u. ×10 ⁻²)	Configurations
W∨II	18.8159	800				4f ¹⁴ 5p ⁶ ¹ S ₀ - 4f ¹⁴ 5p ⁵ (² P° _{1/2}) 6s (1/2,1/2)° ₁
W∨II	21.6219	500				4f ¹⁴ 5p ⁶ ¹ S ₀ - 4f ¹⁴ 5p ⁵ (² P° _{1/2}) 5d (1/2,3/2)° ₁
W∨II	22.3846	300				4f ¹⁴ 5p ⁶ ¹ S ₀ - 4f ¹⁴ 5p ⁵ (² P° _{3/2}) 6s (3/2,1/2)° ₁
W∨II	26.1387	3000				$4f^{14}5p^{6} {}^{1}S_{0} - 4f^{14}5p^{5} ({}^{2}P^{\circ}_{3/2}) 5d (3/2,5/2)^{\circ}_{1}$
W∨II	28.9526	300				4f ¹⁴ 5p ⁶ ¹ S ₀ - 4f ¹³ (² F° _{5/2}) 5p ⁶ 5d (5/2,5/2)° ₁
W∨II	29.4376	200				4f ¹⁴ 5p ⁶ ¹ S ₀ - 4f ¹³ (² F° _{5/2}) 5p ⁶ 5d (5/2,3/2)° ₁
WXLVII	19.1490	13				3p ⁶ 3d ⁹ 4s (5/2,1/2) ₂ - 3p ⁶ 3d ⁹ 4s (3/2,1/2) ₁
WXLVIII	18.5780	20				3p ⁶ 3d ⁹ ² D _{5/2} - 3p ⁶ 3d ⁹ ² D _{3/2}
WLVI	16.3800					

IAEA TCM on A&M Tungsten Data, 29 March – 1 April 2021

© 2021, ITER Organization

Spectral lines for XRCS (UID: 3NQXBB)

Ground state	Excited state	Wavelengths (nm)
W ⁺³⁸ Kr-like		0.4705, 0.5964
W ⁺⁴⁴ Zn-like		0.4403, 0.4499, 0.4697, 0.5738
W ⁺⁴⁵ Cu-like		0.4300
W ⁺⁶⁴ Ne-like 2p ^{6 1} S ₀	2p ⁵ 3s ¹ ¹ P ₁	0.1498
	2p ⁵ 3s ¹ ³ P ₁	0.1279
	2p ⁵ 3d ¹ ³ P ₁	0.1383
	2p ⁵ 3d ¹ ¹ D ₁	0.1191
	2p ⁵ 3d ¹ ³ D ₁	0.1364
W ⁺⁶³ Na-like 3s ^{1 3} S _{1/2}	4p ¹ ² P _{1/2}	0.374
	4p ¹ ² P _{3/2}	0.357

iter china eu india japan korea russia usa

IAEA TCM on A&M Tungsten Data, 29 March – 1 April 2021

© 2021, ITER Organization

IDM UID: 52DP9P Page 6

Core X-Ray Crystal Spectrometer Layout

Modelling needs

- Modelling must to be able to provide synthetic data to help in diagnostic and control system design
- Follow W atoms and ions as they sputter from the target
 - Radiation source from WI and WVII
 - Accurate ionization and CX rates to evaluate prompt re-deposition
 - W charge balance important for thermal force terms leading to migration upstream followed by core penetration
- Vapour shielding during fast transients
 - (Dielectronic) recombination rates and photon opacity
- Currently, the default SOLPS-ITER W data from ADAS is:

'50 ' '89 ' '50 ' '42 ' '89 ' '89 ' 'w 'rec ion cex prb plt zcd ecd esacd scd ccd prb plt zcd ecd[directories in adas]

• At IO, the recommended set is the 'year42' ADAS dataset

iter china eu india japan korea russia usa

IAEA TCM on A&M Tungsten Data, 29 March – 1 April 2021 © 2021, ITER Organization

IDM UID: 52DP9P

Page 8

Charge state bundling for W

SOLPS5.1 AUG benchmark study Bundles based on 'year89' data CPU effort scales ~ O(ns)

[1] X. Bonnin and D. Coster, J. Nucl. Mater. 415, S488 (2011)

IAEA TCM on A&M Tungsten Data, 29 March – 1 April 2021 IDM UID: 52DP9P Page 9 © 2021, ITER Organization

W core influx sensitivity

• This comparison with EDGE2D uses a more recent set of bundles, using 7 stages, based on 'year42' data (SOLPS-ITER data available as IMAS #103077-80/13-24)

Reflection data

From TRIM data set with dedicated W runs

Importance of surface reflection data choice

JET comparison case

- D only, attached conditions

SOLPS 3.0.7 (blue solid line) SOLPS 3.0.6 (blue dashed line) EDGE2D-Eirene (red dashed line)

Difference was tracked to use of older default TRIM dataset by Eirene for SOLPS 3.0.6 and EDGE2D (with extrapolated W reflection data), while SOLPS 3.0.7 uses a new TRIM dataset with dedicated W reflection data

Courtesy of N. Horsten (Aalto U.)

iter china eu india japan korea russia usa

© 2021, ITER Organization

IDM UID: 52DP9P

Page 12

Atom/molecule mix influence

On-going work to refine our models

- Extensive study of the impact of divertor surface material (Be vs W):
 - J.-S. Park *et al.*, <u>Assessment of ITER divertor performance during early operation</u> <u>phases</u>, <u>Nucl. Fusion</u> **61**, 016021 (2021)
- Improvement to physics model to compute thermal and friction forces on impurities:
 - E. Sytova et al., <u>Comparing N versus Ne as divertor radiators in ASDEX-Upgrade</u> and ITER, <u>Nuclear Materials & Energy</u> 19, 72-78 (2019)
 - E. Sytova *et al.*, <u>Derivation of the friction and thermal force for SOLPS-ITER</u> <u>multicomponent plasma modelling</u>, <u>Phys. Plasmas</u> **27**, 082507 (2020)
 - S. Makarov *et al.*, submitted to <u>Phys. Plasmas</u> (2021)
- Revisiting W bundling schemes in SOLPS-ITER
 - S. Gao *et al.*, accepted for publication in <u>AIP Advances</u> (2021)

IAEA TCM on A&M Tungsten Data, 29 March – 1 April 2021 © 2021, ITER Organization

Summary of data needs

- Improved S/XB ratio accuracies for all spectral lines of interest
 - Critical to climb back from photon emission rates to W plasma concentration
 - Need to cover range from W^0 to at least $W^{\scriptscriptstyle +64}$
- Refinement of reflection data at low energies
 - Dependencies on W surface state, incident angle, incident hydrogen isotope, ...
- Detailed sputtering yields
 - As functions of temperature, surface roughness, other impurities present...
- Fast and reliable prompt redeposition model
- Improvement of accuracy of ionization, recombination, radiation, and CX rates
 - Reliable charge distribution to deduce upstream W migration and core penetration

IAEA TCM on A&M Tungsten Data, 29 March – 1 April 2021 © 2021, ITER Organization