# Spectroscopic investigations on energy, angular and atomic level distribution functions of sputtered tungsten

S. Ertmer, O. Marchuk, S. Dickheuer, S. Brezinsek, A. Kreter

Forschungszentrum Jülich GmbH - Institut für Energie- und Klimaforschung - Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, Germany

Joint IAEA-FZJ Technical Meeting on Collisional-Radiative Properties of W and Hydrogen in Edge Plasma of Fusion Devices – 31 March 2021





This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.



## MOTIVATION

- Tungsten (W) proposed as PFM in divertor (ITER, DEMO) and main chamber (DEMO)
- Lifetime of PFM determined by sputtering
- Erosion of W leads to cooling of plasma and needs to be monitored
- Spectroscopy as tool to monitor W gross erosion

 $\rightarrow$  Understanding of the atomic data and the ongoing processes is essential





## **MOTIVATION**

#### **Physical sputtering**

- Occurs at solid surfaces at plasma boundary
- Depends on impact energy and incident angle of incoming particles
- Sputtering at high impact energies well understood
- In fusion research impact energy in the range of 100 eV
- Energy and angular distribution of sputtered atoms remains open question
- Sputtering in ground and/or excited level





[2] R. Behrisch and W. Eckstein "Sputtering by Particle Bombardment", Springer-Verlag (2007)

3

## MOTIVATION

#### **Experimental facility PSI-2**



| conditions        | argon plasma                           |  |  |
|-------------------|----------------------------------------|--|--|
| Τ <sub>e</sub>    | ≈3 eV                                  |  |  |
| n <sub>e</sub>    | ≈ 1 ·10 <sup>12</sup> cm <sup>-3</sup> |  |  |
| E <sub>imp</sub>  | Up to 150 eV                           |  |  |
| В                 | 92 mT                                  |  |  |
| T <sub>surf</sub> | 300 K                                  |  |  |





## OUTLINE

- I. Line shape of sputtered atoms
- II. Atomic level population of sputtered tungsten





Mitglied der Helmholtz-Gemeinschaft

#### **Motivation**

- Knowledge of absolute intensity  $I_{tot}$  is essential to determine the gross erosion
- Light reflection impacts the measured intensity values and line shape
- Light reflection in a carbon machine was investigated in [4], research on reflection of metallic walls (W) is needed



7

[4] N.H. Brooks et al. 2005 J. Nucl. Mater. 227–231[5] refractiveindex.info for W: Werner et al. 2009 DFT calculations; for C : Larruquert et al. 2013



31 March 2021



#### Motivation: Energy and angular distribution of sputtered atoms

#### High ion impact energy [6]:

Thompson energy distribution F(E) [7]:

$$F(E) = \frac{E}{(E+E_{\rm b})^{n+1}} \left(1 - \sqrt{\frac{E}{E_{\rm max}}}\right)$$

E = Energy of sputtered atoms,

 $E_{\rm b} = {\rm surface \ binding \ energy},$ 





[6] R. Behrisch and W. Eckstein "Sputtering by Particle Bombardment", Springer-Verlag, 2007 [7] M W Thompson 1968 Phil. Mag. 18 377-414

Mitglied der Helmholtz-Gemeinschaft

Cosine angular distribution  $G(\Theta)$ :

$$G(\Theta) \propto \cos^b(\Theta)$$

 $\Theta = \text{polar angle},$ b = 1 (scaling parameter).

#### Low ion impact energy:

Deviations from Thompson energy (n>2) and cosine angular (heart shape) distribution are reported





#### Method



Doppler shift:

$$\lambda = \lambda_0 \sqrt{\frac{c-v}{c+v}}$$

 $\lambda = \text{detected wavelength},$   $\lambda_0 = \text{emitted wavelength},$  c = speed of light,v = particle velocity.

Effect has been observed for fast H atoms in PSI-2 [8]





#### **Experimental results**

• Stronger line shape deformation for AI than for W (proof of principle)

 $\frac{\Delta\lambda}{\lambda} \propto \sqrt{\frac{2E_{kin}}{m}}$ 

- Only explanation is light reflection
- Erosion of surface leads to decrease in reflection





Al-target before and after exposure

#### Al-target in argon plasma E<sub>impact</sub> ≈ 110 eV





31 March 2021

#### Model

#### Doppler-shifted emission model based on [9]:

- Point source approximation
- Cosine angular distribution  $G(\Theta) \propto \cos^b(\Theta)$
- Light reflection at the surface

#### Adapted:

• Energy distribution = Thompson energy distribution

#### Expanded:

- Zeeman-effect
- Instrumental broadening





4982.4 4982.45 4982.5 4982.55 4982.6 4982.65 4982.7 4982.75 4982.8

Wavelength [Å]



[9] S. Dickheuer et. al Physics of Plasmas 26, 073513 (2019)

31 March 2021

Page 11

Intensity [arb. unit]



#### Results

| Impact energy  | 70 eV | 90 eV | 110 eV | 130 eV | 150 eV |
|----------------|-------|-------|--------|--------|--------|
| n              | 2.17  | 2.12  | 2.04   | 2.00   | 1.99   |
| Reflection [%] | 54    | 53    | 54     | 55     | 55     |

- Good agreement using Thompson energy and cosine angular distribution
- $\rightarrow$  Same as for high impact energies
- Good agreement for literature values of reflection ≈ 53% [5]

#### W-target in argon plasma: Variation of impact energy



[5] W. S. M. Werner et al. J. Phys Chem Ref. Data 38, (2009) 1013-1092

intensity [arb. unit]

#### **Results**



SDTrimSP simulations [10] for Ar ions at  $E_{\rm imp} = 150 \, {\rm eV}$ 

Angular distribution



Energy distribution of SDTrimSP: good agreement only for over-cosine (b>1) in angular distribution

Especially for high energetic part of the spectrum

[10] A. Mutzke et al. IPP-Report 2019-02, (2019)

14





#### Summary

- Proof of light reflection in the line shape of sputtered atoms
- In-situ light reflection measurements by modeling
- Energy distribution modeled from line shape
- Good agreement for Thompson energy and cosine angular distribution
- SDTrimSP energy distribution only good agreement for over-cosine

#### Outlook

- Expand model to 2D source for angular and energy distribution modeling
- Benchmark angular distribution with spatial intensity development
- Investigation of impact of surface morphology on angular and energy distribution





Mitglied der Helmholtz-Gemeinschaft

#### Motivation

- Initial atomic energy level population distribution of sputtered W is unknown
  - important for analysis of spectroscopic data
  - not well understood
    - TEXTOR experiments: population according to effective temperature  $T_w$ led to unphysical electron temperature  $T_e$  (1 eV) [12]
    - Ion beam experiments using different materials: population in the ground level (>95 %) [13]

#### Grotrian diagram of W





[11] nist.gov (visited on 24.11.2020)[12] I. Beigman et al. Plasma Phys. Control. Fusion (2007) 49 1833

[13] A. P. Yalin et. al. Applied optics (2005) Vol. 44 6496

Mitglied der Helmholtz-Gemeinschaft

17

#### Method





#### Method

$$\frac{dN_i}{dt} = -\sum_{j < i} N_i A_{ij} + n_e N_0 \langle v_e \sigma_X \rangle$$

• Position of maximum line intensity is proportional to velocity and reciprocal Einstein coefficient:

$$d = v \cdot \tau = \frac{v}{\sum A_{ij}}$$

• Angular distribution of sputtered particles leads to:

$$d \approx \frac{v}{2\sum A_{ij}}$$

 Ionisation and geometrical losses lead to decreasing intensity



#### **Results**



electron configuration [11]

| Wavelength<br>(Å) | Lower<br>level              | Einstein coefficient<br>(s <sup>-1</sup> ) | Einstein coefficient<br>upper level (s <sup>-1</sup> ) [11] | Relative<br>proportion |
|-------------------|-----------------------------|--------------------------------------------|-------------------------------------------------------------|------------------------|
| 4982.593          | <sup>5</sup> D <sub>0</sub> | 4.17E+5                                    | 5.31E+5                                                     | 0.79                   |
| 4008.751          | <sup>7</sup> S <sub>3</sub> | 1.63E+7                                    | 1.65E+7                                                     | 0.99                   |



[11] nist.gov (visited on 24.11.2020) Mitglied der Helmholtz-Gemeinschaft

#### Results

- Experimental data: maximum of both lines at the same position
- $d \approx \frac{v}{2\sum A_{ij}}$
- According to Thompson energy distribution [7]:  $v \approx 2100 \,\mathrm{m\,s^{-1}}$
- Agreement only for ground term <sup>5</sup>D<sub>0</sub>



21



| Wavelength<br>(Å) | Lower<br>level              | Einstein coefficient<br>(s <sup>-1</sup> ) | Einstein coefficient<br>upper level (s <sup>-1</sup> ) [11] | Relative proportion |
|-------------------|-----------------------------|--------------------------------------------|-------------------------------------------------------------|---------------------|
| 4982.593          | <sup>5</sup> D <sub>0</sub> | 4.17E+5                                    | 5.31E+5                                                     | 0.79                |
| 4008.751          | <sup>7</sup> S <sub>3</sub> | 1.63E+7                                    | 1.65E+7                                                     | 0.99                |

[7] M W Thompson 1968 Phil. Mag. 18 377–414

[12] A. Goehlich et. al. J. Nucl. Mater. 1999 Vol.266-269 501-506

[11] nist.gov (visited on 24.11.2020)



**Results** 



| Wavelength<br>(Å) | Lower<br>level              | Position<br>maximum (mm) | Einstein coefficient<br>upper level (s <sup>-1</sup> ) [11] | Calculated velocity (m/s) | Relative proportion |
|-------------------|-----------------------------|--------------------------|-------------------------------------------------------------|---------------------------|---------------------|
| 4982.593          | <sup>5</sup> D <sub>0</sub> | 2.34                     | 5.31E+5                                                     | 1952                      | 0.79                |
| 4294.605          | <sup>7</sup> S <sub>3</sub> | 2.21                     | 1.32E+7                                                     | 58212                     | 0.94                |

[11] nist.gov (visited on 24.11.2020)

Mitglied der Helmholtz-Gemeinschaft

31 March 2021



**Results** 



| Wavelength<br>(Å) | Lower<br>level              | Position<br>maximum (mm) | Einstein coefficient<br>upper level (s <sup>-1</sup> ) [11] | Calculated velocity (m/s) | Relative proportion |
|-------------------|-----------------------------|--------------------------|-------------------------------------------------------------|---------------------------|---------------------|
| 4982.593          | <sup>5</sup> D <sub>0</sub> | 2.34                     | 5.31E+5                                                     | 1952                      | 0.79                |
| 4843.810          | <sup>5</sup> D <sub>2</sub> | 1.80                     | 3.37E+6                                                     | 12132                     | 0.56                |

[11] nist.gov (visited on 24.11.2020)

Mitglied der Helmholtz-Gemeinschaft

31 March 2021



**Results** 



| Wavelength<br>(Å) | Lower<br>level              | Position<br>maximum (mm) | Einstein coefficient<br>upper level (s <sup>-1</sup> ) [11] | Calculated velocity (m/s) | Relative proportion |
|-------------------|-----------------------------|--------------------------|-------------------------------------------------------------|---------------------------|---------------------|
| 4982.593          | <sup>5</sup> D <sub>0</sub> | 2.34                     | 5.31E+5                                                     | 1952                      | 0.79                |
| 4244.367          | <sup>5</sup> D <sub>4</sub> | 4.05                     | 1.44E+6                                                     | 11664                     | 0.96                |

[11] nist.gov (visited on 24.11.2020)

Mitglied der Helmholtz-Gemeinschaft

CH

Forschungszentrum

#### Summary

- High spatial resolution spectroscopy measurements
- For a cold target (T<sub>surf</sub>= 300 K) and mono-energetic incident ions in the order of 100 eV, W atoms are sputtered in the ground state <sup>5</sup>D<sub>0</sub>
- Exited levels  ${}^7S_3$  and  ${}^5D_{x>0}$  are not populated during sputtering

#### Outlook

- Further investigation with different lines, target temperatures, gases and plasma parameters
- Laser absorption measurements and Laser induced fluorescence (LIF) measurements in front of the target (direct measurements of population)

