Investigating the role of neutral particles in the linear device Magnum-PSI

Ivo Classen, Hennie van der Meiden, Gijs Akkermans, Renato Perillo, Jonathan van den Berg, Richard Engeln
Outlook

• Introduction to Magnum-PSI

• A: Detachment studies in Magnum-PSI
• B: Investigating Nitrogen chemistry: N-MAR
• C: Plasma-neutral interaction in the pre-sheath

• D: Plans for VUV-LIF on Magnum-PSI: $\text{H}_2(r,\nu)$
Magnum-PSI

- Cascaded arc plasma source: H, D, He, Ar, ...
- Superconducting magnet
- Target manipulator + TEAC
- Many diagnostics
 - TS, CTS
 - OES, fast camera, bolometer
 - IR, pyrometer, Probes, calorimetry
 -
Magnum-PSI as a divertor simulator

T_e up to 5 eV

$n_e = 10^{19} – 10^{21} \text{ m}^{-3}$

Γ_i up to $10^{25} \text{ m}^{-2}\text{s}^{-1}$

q up to 50 MWm$^{-2}$

Pulses: up to 20eV and 1GWm$^{-2}$

Differential pumping:

neutrals: 0.3 Pa during plasma
Section A
Detachment studies in Magnum-PSI

Gijs Akkermans et al.
PoP, 27 (2020) 102509
Seeding gas in target chamber simulates detached states

Higher neutral background pressure →
Pressure and Fluxes strongly reduced
Balmer: 3 regimes

- 0.3 Pa
 \[T_e = 4.5 \text{ eV} \]
 Peaked
 Overpopulated

- 3.5 Pa
 \[T_e = 1.2 \text{ eV} \]
 Hollow

- 12.7 Pa
 \[T_e = 0.06 \text{ eV} \]
 Peaked
 Underpopulated
Fulcher Band measurements

\(Q_{(0,0)}, Q_{(1,1)} \) and \(Q_{(2,2)} \) branches

No hollow profiles observed
Fitting rotational and vibrational temperatures

Higher branches have lower T_{rot}

Fitting for T_{vib} fails at low neutral densities
(Franck-Condon excitation from ground state in Boltzmann distribution)
Detachment scan: Temperatures and reaction rates

- Better measurement of T_{vib} needed

Ionization, MAR, recombination
Section B
Investigating Nitrogen chemistry: N-MAR

Renato Perillo et al.
PoP, 26 (2019) 102502
PPCF, 60 (2018) 105004
Global model of $H_2 + N_2$ plasma chemistry

H_2 species

$H, H_2, H^+, H_2^+, H_2(v_{n=4}), H_3^+$

N_2 species

$N_2, N, N_2^+ (A^3 \Sigma), N_2^+, N^+$

H_2-N_2 species

$NH, NH_2, NH_3, NH_3^+, NH_2^+, NH^+, N_2H^+, NH_4^+$

Equations

<table>
<thead>
<tr>
<th>k_{Rate}</th>
<th>Reactions</th>
<th>Rate coefficients $(cm^3 molecule^{-1} s^{-1})$</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$A + H \rightarrow A + H$</td>
<td>1.6 x 10^{-10}</td>
<td>(90)</td>
</tr>
<tr>
<td>2</td>
<td>$A + H_2 \rightarrow A + H_2$</td>
<td>1.6 x 10^{-10}</td>
<td>(90)</td>
</tr>
<tr>
<td>3</td>
<td>$A + H_2 \rightarrow A + H_2$</td>
<td>1.6 x 10^{-10}</td>
<td>(90)</td>
</tr>
<tr>
<td>4</td>
<td>$N_2 \rightarrow N + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>5</td>
<td>$N_2 \rightarrow N + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>6</td>
<td>$N_2 \rightarrow N + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>7</td>
<td>$N_2 \rightarrow N + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>8</td>
<td>$N_2 \rightarrow N + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>9</td>
<td>$N_2 \rightarrow N + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>10</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>11</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>12</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>13</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>14</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>15</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>16</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>17</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>18</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>19</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>20</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>21</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>22</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>23</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>24</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>25</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>26</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>27</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>28</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>29</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>30</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>31</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>32</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>33</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>34</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>35</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>36</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>37</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>38</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>39</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>40</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>41</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
<tr>
<td>42</td>
<td>$N_2 + N \rightarrow N_2 + N$</td>
<td>5.4 x 10^{-10}</td>
<td>(125)</td>
</tr>
</tbody>
</table>

Ivo Classen | TM on Tungsten and Hydrogen
29 maart 2021

1332
Reduced set of reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H + e^- \rightarrow H^+ + 2e^-$</td>
<td>Ionization</td>
</tr>
<tr>
<td>$H_2 + e^- \rightarrow H_2^+ + 2e^-$</td>
<td>Ionization</td>
</tr>
<tr>
<td>$N_2 + e^- \rightarrow N + N + e^-$</td>
<td>Dissociation</td>
</tr>
<tr>
<td>$H_2 + e^- \rightarrow H_2v + e^-$</td>
<td>Vibrational excitation</td>
</tr>
<tr>
<td>$H_2v + H^+ \rightarrow H_2^+ + H$</td>
<td>Ion conversion</td>
</tr>
<tr>
<td>$H_2^+ + e^- \rightarrow H + H$</td>
<td>Dissociative recombination</td>
</tr>
<tr>
<td>$H_2 + N \rightarrow NH + H$</td>
<td>Atom transfer</td>
</tr>
<tr>
<td>$N_2 + H_2^+ \rightarrow N_2H^+ + H$</td>
<td>Proton transfer</td>
</tr>
<tr>
<td>$N_2H^+ + e^- \rightarrow N_2 + H$</td>
<td>Dissociative recombination</td>
</tr>
<tr>
<td>$N_2H^+ + e^- \rightarrow NH + N$</td>
<td>Dissociative recombination</td>
</tr>
<tr>
<td>$NH + H^+ \rightarrow NH^+ + H$</td>
<td>Ion conversion</td>
</tr>
<tr>
<td>$NH^+ + e^- \rightarrow N + H$</td>
<td>Dissociative recombination</td>
</tr>
<tr>
<td>$H + e^- \rightarrow H + e^-$</td>
<td>Elastic</td>
</tr>
<tr>
<td>$H_2 + e^- \rightarrow H_2 + e^-$</td>
<td>Elastic</td>
</tr>
<tr>
<td>$N + e^- \rightarrow N + e^-$</td>
<td>Elastic</td>
</tr>
<tr>
<td>$N_2 + e^- \rightarrow N_2 + e^-$</td>
<td>Elastic</td>
</tr>
</tbody>
</table>
New recombination pathway: N-MAR

1) $H^+ + NH_x \rightarrow NH_x^+ + H$
2) $NH_x^+ + e^- \rightarrow NH_{x-1} + H$

Ion conversion
Dissociative recombination
Experimental evidence of N-MAR effect

Strong presence of NH observed

Pressure drops with N_2 content

@ constant $P_{\text{back}} = 2 \text{Pa}$
Nitrogen chemistry implemented in B2.5 Eunomia

Reduction of plasma pressure reproduced
Importance of N-MAR

H density rises with N_2: recombination

N-MAR most dominant N_2 process

N-MAR dominates over MAR
Section C
Plasma-neutral interaction in the pre-sheath

Jonathan van den Berg et al.
(submitted to Nuclear Fusion)
Plasma flux measurements

Plasma volume
Incoherent Thomson Scattering (TS): n_e, T_e
Coherent Thomson Scattering (CTS): v_i, T_i
TS + CTS: Γ, p^{tot}, q_\parallel

Target surface
Pyrometer + IR camera: T_{surf}
In-target thermocouple: q
In-target Langmuir probe for $I_{sat} = e\Gamma_t$
Parallel plasma velocities

At $d_{\text{target-laser}} = 25$ mm

- Velocity decreases with density
- Same for the Mach number $M = \frac{v}{c_s}$
- Almost complete stagnation during pulses
- Momentum conservation under isothermal conditions:
 \[M_u = \frac{n_{se}}{n_u} = \frac{1}{M_{se}^2 + 1} = \frac{1}{2} \]
- Lower M implies higher momentum losses in near wall region
At low n_e:
- Constant T
- Pre-sheath acceleration toward $M=1$ (Bohm)

At high n_e:
- Cooling towards wall
- No acceleration / stagnation, M well below 0.5

At high $n_e \rightarrow$ losses to neutrals

(Energy and momentum losses in near wall region confirmed by comparison with target fluxes)
Losses to neutrals: 0D model

Simplified 0D model was derived to predict losses in p-n interaction region
- Recombining neutrals diffuse radially out
- Recombination, ionization and CX

→ Loss factors depend on density:
Substantial losses in dense conditions
Implications of near wall p-n coupling

- Pre-sheath acceleration not experimentally observed in high densities:
 ➔ Must occur in < 3mm
- Mach number still far below 0.5 at 3mm
 ➔ momentum loss region is very narrow
 ➔ strong gradients

Modelling:

- Near wall resolution of SOL models should be high enough:
 \[d_{\text{grid}} < \lambda_{\text{neutral mfp}} \]
- If grid size too course the sheath boundary condition (Bohm) might fail: \(M < 1 \)
Section D
Plans for VUV-LIF on Magnum-PSI: $H_2(r,\nu)$
Motivation

• The ro-vibrational distribution plays a major role: MAR rate can vary multiple orders of magnitude

• Direct measurement difficult, but $H_2(r,\nu)$ distribution previously successfully measured in both linear plasmas and tokamaks (no current set-ups)

• ➔ Build new diagnostic on Magnum-PSI (divertor relevant plasmas) based on proven methods: VUV-LIF and CARS

• Grant application running at Dutch Scientific Organization (NWO)

From Vankan et al.
Active spectroscopy: 3 methods

- Deploy active spectroscopy for complete exploration of ro-vibrational distribution of H₂ ground state:

- **VUV-LIF** based on Stimulated anti-Stokes Raman scattering (population ν > 2, J)

- Coherent anti-Stokes Raman spectroscopy (**CARS**): (population ν ≤ 2, J)

- Two photon Absorption Laser Induced Fluorescence (**TALIF**) (density H atoms in ground state)
VUV-LIF principle

• Excite ground state ro-vib level to electronically excited state
• Measure fluorescence signal
• Scanning the laser wavelength excites different ro-vib states
• 110 to 165 nm for $\nu=0$ to $\nu=14$

VUV LIF spectroscopy of H_2 ground state
Planned VUV-LIF setup

- Laser in VUV range (down to ~ Ly α)
 - Raman cell (SARS)
- In vacuum
- VUV monochromators
- Vacuum window transmission (>120 nm) prevents measuring lower vibrational states (ν>2)
Complementary techniques: CARS

Lower vibrational states ($\nu \leq 2$) can be measured with CARS

- Same lasers as VUV-LIF
- No vacuum needed
- CARS:
 - 4-wave mixing process
 - 660-700 nm probe beam
 - 532 nm pump beam
Complementary techniques: TALIF

TALIF:
- Density of atomic H density
 Also applicable to N
- Excitation: 205.14 nm
 (for Ly β absorption with 2 photons)
- Fluorescence: Hα

Together with existing diagnostics, these active spectroscopy methods would provide a uniquely complete picture of the (molecular) processes in divertor plasmas
Magnum-PSI welcomes your experiments!

- Well diagnosed
- Accessible
- Simple geometry
- Steady state plasma

Contact: i.g.j.classen@differ.nl