Investigating the role of neutral particles in the linear device Magnum-PSI

Ivo Classen, Hennie van der Meiden, Gijs Akkermans, Renato Perillo, Jonathan van den Berg, Richard Engeln

Introduction to Magnum-PSI

- A: Detachment studies in Magnum-PSI
- B: Investigating Nitrogen chemistry: N-MAR
- C: Plasma-neutral interaction in the pre-sheath
- D: Plans for VUV-LIF on Magnum-PSI: $H_2(r,v)$

Magnum-PSI

- Cascaded arc plasma source: H, D, He, Ar, …
- Superconducting magnet
- Target manipulator + TEAC
- Many diagnostics
 - TS, CTS
 - OES, fast camera, bolometer
 - IR, pyrometer, Probes, calorimetry
 -

Magnum-PSI as a divertor simulator

 T_e up to 5 eV

 $n_e = 10^{19} - 10^{21} \text{ m}^{-3}$

 Γ_i up to 10²⁵ m⁻²s⁻¹

q up to 50 MWm⁻²

Pulses: up to 20eV and 1GWm⁻²

Differential pumping:

Section A Detachment studies in Magnum-PSI

Gijs Akkermans et al. PoP, **27** (2020) 102509

Simulating detachment in Magnum

Seeding gas in target chamber simulates detached states

Higher neutral background pressure \rightarrow

Pressure and Fluxes strongly reduced

Fulcher Band measurements

Fitting rotational and vibrational temperatures

Higher branches have lower T_{rot}

Fitting for T_{vib} fails at low neutral densities

(Franck-Condon excitation from ground state in Boltzmann distribution)

Detachment scan: Temperatures and reaction rates

Ionization, MAR, recombination

→ Better measurement of T_{vib} needed

Section B Investigating Nitrogen chemistry: N-MAR

Renato Perillo et al. PoP, **26** (2019) 102502 PPCF, **60** (2018) 105004

Global model of $H_2 + N_2$ plasma chemistry

43

 $N + NH_{-} \rightarrow N_{-} + H$

H ₂ species	N ₂ species	H ₂ -N ₂ species
$H, H_2, H^+, H_2^+, H_2(v_{n=4}), H_3^+$	$N_2, N, N_2^*(A^3\Sigma), N_2^+, N^+$	$NH, NH_2, NH_3, NH_3^+, NH_2^+, NH^+, N_2H^+, NH_4^+$

 1.2×10^{-3}

[113]

N#.	Reaction	Rate coefficient (cm ³ s ⁻¹)	Reference
1	$H + e^- \rightarrow H^+ + 2e^-$	from cross section	[96]
2	$H_2 + e^- \rightarrow H_2^+ + 2e^-$	from cross section	[96]
3	$N + e^- \rightarrow N^+ + 2e^-$	from cross section	[97]
4	$N_2 + e^- \rightarrow N_2^+ + 2e^-$	from cross section	[97]
5	$N_2 + e^- \rightarrow N_2^*(A^3\Sigma) + e^-$	from cross section	[98]
6	$N_2^*(A^3\Sigma) + e^- \rightarrow N_2^+ + 2e^-$	from cross section	[57]
7	$N_2 + e^- \rightarrow N^+ + N + 2e^-$	$2.9 \times 10^{-9} \times T_e^{0.72} \times exp(-29.71/T_e)$	[99]
8	$H_2 + e^- \rightarrow H^+ + H + 2e^-$	$9.4 \times 10^{-10} \times T_e^{0.45} \times exp(-29.94/T_e)$	[100]
9	$H_2 + e^- \rightarrow H_2 v_{n=4} + e^-$	$6.7 \times 10^{-10} \times T_e^{1.82} \times exp(-1.89/T_e)$	[66]
10	$NH + e^- \rightarrow NH^+ + 2e^-$	$2.1 \times 10^{-8} \times T_e^{0.37} \times exp(-15.49/T_e)$	[101]
11	$NH + e^- \rightarrow N^+ + H + 2e^-$	$7.6 \times 10^{-9} \times T_e^{0.29} \times exp(-16.82/T_e)$	[101]
12	$NH_2 + e^- \rightarrow NH_2^+ + 2e^-$	$1.3 \times 10^{-8} \times T_e^{0.5} \times exp(-12.4/T_e)$	[101]
13	$NH_2 + e^- \rightarrow NH^+ + H + 2e^-$	$2.2 \times 10^{-8} \times T_e^{0.21} \times exp(-17.97/T_e)$	[101]
14	$NH_3 + e^- \rightarrow NH_3^+ + 2e^-$	$1.5 \times 10^{-8} \times T_e^{0.4} \times exp(-13.61/T_e)$	[101]
15	$NH_3 + e^- \rightarrow NH_2^+ + H + 2e^-$	$1.6 \times 10^{-8} * T_e^{0.34} \times exp(-15.41/T_e)$	[101]
16	$NH_3 + e^- \rightarrow NH^+ + H + H + 2e^-$	$5.4 \times 10^{-10} \times T_e^{0.37} \times exp(-26.06/T_e)$	[101]
17	$NH_3 + e^- \rightarrow N^+ + H + H_2 + 2e^-$	$8.8 \times 10^{-11} \times T_e^{0.59} \times exp(-29/T_e)$	[102]
18	$NH_3 + e^- \rightarrow H^+ + NH_2 + 2e^-$	$1.3 \times 10^{-10} \times T_e^{0.47} \times exp(-28.55/T_e)$	[102]
19	$H_2^+ + e^- \rightarrow H + H$	$1.6 \times 10^{-8} \times (T_e/0.026)^{-0.43}$	[103]
20	$H_3^+ + e^- \rightarrow H_2^- + H$	$2.34 \times 10^{-8} \times (T_e/0.026)^{-0.52}$	[104]
21	$H_2^+ + e^- \rightarrow H + H + H$	$4.36 \times 10^{-8} \times (T_a/0.026)^{-0.52}$	[104]
22	$N_2^+ + e^- \rightarrow N + N$	$1.7 \times 10^{-7} \times (T_e/0.026)^{-0.3}$	[105]
23	$NH^+ + e^- \rightarrow N + H$	$4.3 \times 10^{-8} \times (T_e/0.026)^{-0.5}$	[103]
24	$NH_2^+ + e^- \rightarrow NH + H$	$1.02 \times 10^{-7} \times (T_e/0.026)^{-0.4}$	[106]
25	$NH_2^+ + e^- \rightarrow N + H_2$	$1.98 \times 10^{-8} \times (T_e/0.026)^{-0.4}$	[106]
26	$NH_3^+ + e^- \rightarrow NH + 2H$	$1.55 \times 10^{-7} \times (T_e/0.026)^{-0.5}$	[103]
27	$NH_3^+ + e^- \rightarrow NH_2 + H$	$1.55 \times 10^{-7} \times (T_e/0.026)^{-0.5}$	[103]
28	$NH_4^+ + e^- \rightarrow NH_3 + H$	$8.49 \times 10^{-7} \times (T_e/0.026)^{-0.6}$	[106]
29	$NH_4^+ + e^- \rightarrow NH_2 + 2H$	$3.77 \times 10^{-8} \times (T_e/0.026)^{-0.6}$	[106]
30	$N_2H^+ + e^- \rightarrow N_2 + H$	$5.13 \times 10^{-8} \times (T_e/0.026)^{-0.72}$	[107]
31	$N_2H^+ + e^- \rightarrow NH + N$	$2.09 \times 10^{-8} \times (T_e/0.026)^{-0.72}$	[108]
32	$N_2 + e^- \rightarrow N + N + e^-$	$2.4 \times 10^{-8} \times T_e^{0.27} \times exp(-15.53/T_e)$	[99]
33	$H_2 + e^- \rightarrow H + H + e^-$	$8.4 \times 10^{-8} \times T_e^{-0.45} \times exp(-11.18/T_e)$	[100]
34	$NH + e^- \rightarrow N + H + e^-$	$4.7 \times 10^{-8} \times T_e^{-0.22} \times exp(-7.69/T_e)$	[109]
35	$NH_2 + e^- \rightarrow NH + H + e^-$	$4.5 \times 10^{-8} \times T_e^{-0.22} \times exp(-7.61/T_e)$	[109]
36	$NH_2 + e^- \rightarrow N + H_2 + e^-$	$1.5 \times 10^{-8} \times T_e^{0.38} \times exp(-11.44/T_e)$	[109]
37	$NH_3 + e^- \rightarrow NH + H + H + e^-$	$1.3 \times 10^{-8} \times T_e^{0.38} \times exp(-11.06/T_e)$	[110]
38	$NH_3 + e^- \rightarrow NH_2 + H + e^-$	$4.2 \times 10^{-8} \times T_e^{-0.19} \times exp(-7.59/T_e)$	[110]
39	$NH_3 + e^- \rightarrow NH + H_2 + e^-$	$4.1 \times 10^{-8} \times T_e^{-0.26} \times exp(-4.81/T_e)$	[110]
40	$H_2 + NH \rightarrow NH_2 + H$	$5.96 \times 10^{-11} \times exp(-0.67/T_g)$	[111]
41	$NH_3 + H \rightarrow NH_2 + H_2$	$8.4 \times 10^{-14} \times (T_g/0.026)^{4.1} \times exp(-0.41/T_g)$	[112]
42	$NH + NH_2 \rightarrow NH_3 + N$	1.66×10^{-12}	[112]

44	$NH_2 + H_2 \rightarrow NH_3 + H$	$5.4 \times 10^{-11} \times exp(-0.56/T_a)$	[114]
45	$NH + NH \rightarrow NH_2 + N$	$1.7 \times 10^{-12} \times (T_{-}/0.026)^{15}$	[115]
46	$NH + NH \rightarrow N_2 + H + H$	8.5 × 10 ⁻¹¹	[56]
47	$NH_2 + H \rightarrow NH + H_2$	$6.6 \times 10^{-11} \times exp(-0.1586/T_o)$	[116]
48	$NH + NH \rightarrow N_2 + H_2$	$5 \times 10^{-14} \times (T_e/0.026)$	[116]
49	$H_2 + N \rightarrow NH + H$	$4.65 \times 10^{-11} \times exp(-1.43/T_{a})$	[111]
50	$N + NH \rightarrow N_2 + H$	5 × 10 ⁻¹¹	[113]
51	$NH + H \rightarrow N + H_2$	$5.4 \times 10^{-11} \times exp(-0.0142/T_{o})$	[116]
52	$N^+ + H_2 \rightarrow NH^+ + H$	5×10^{-10}	[117]
53	$N^+ + NH_2 \rightarrow NH_2^+ + N$	1×10^{-9}	[118]
54	$N^* + H \rightarrow H^* + N$	2×10^{-10}	[119]
55	$N^+ + N_2 \rightarrow N + N_2^+$	2×10 ⁻¹¹	[117]
56	$N^+ + NH \rightarrow NH^+ + N$	$3.7 \times 10^{-10} \times (T_g/0.026)^{-0.5}$	[118]
57	$N^+ + NH_3 \rightarrow N_2H^+ + H_2$	2.1×10^{-10}	[117]
58	$N^+ + NH \rightarrow N_2^+ + H$	$3.7 \times 10^{-10} \times (T_a/0.026)^{-0.5}$	[118]
59	$N^+ + NH_3 \rightarrow NH_3^+ + N$	1.7×10^{-9}	[117]
60	$N^+ + NH_3 \rightarrow NH_2^+ + NH$	4.7×10^{-10}	[117]
61	$H^+ + NH_3 \rightarrow NH_3^+ + H$	$3.7 \times 10^{-9} \times (T_{\alpha}/0.026)^{-0.5}$	[120]
62	$H^+ + NH \rightarrow NH^+ + H$	$2.1 \times 10^{-9} \times (T_g/0.026)^{-0.5}$	[118]
63	$H^+ + NH_2 \rightarrow NH_2^+ + H$	$2.9 \times 10^{-9} \times (T_g/0.026)^{-0.5}$	[118]
64	$H^+ + H_2 v_{n=1} \rightarrow H + H_2^+$	2.5×10^{-9}	[36]
65	$H_2^+ + NH_3 \rightarrow H_2 + NH_3^+$	5.7×10^{-9}	[117]
66	$H_2^+ + N_2 \rightarrow N_2 H^+ + H$	2 × 10 ⁻⁹	[117]
67	$H_2^+ + N \rightarrow NH^+ + H$	1.9×10^{-9}	[118]
68	$H_2^+ + N \rightarrow N^+ + H_2$	5×10-10	[118]
69	$H_2^* + NH \rightarrow NH^* + H_2$	$7.6 \times 10^{-10} \times (T_g/0.026)^{-0.5}$	[117]
70	$H_2^+ + NH_2 \rightarrow NH_2^+ + H_2$	$7.6 \times 10^{-10} \times (T_g/0.026)^{-0.5}$	[118]
71	$H_2^+ + NH \rightarrow NH_2^+ + H$	$2.1 \times 10^{-9} \times (T_g/0.026)^{-0.5}$	[118]
72	$H_2^+ + NH_2 \rightarrow NH_3^+ + H$	5 × 10 ⁻¹¹	[119]
73	$H_2^+ + NH_3 \rightarrow NH_4^+ + H$	5 × 10 ⁻¹¹	[119]
74	$H_2^+ + H_2 \rightarrow H_3^+ + H$	2 × 10 ⁻⁹	[15]
75	$H_3^+ + N \rightarrow NH^+ + H_2$	2.6 × 10 ⁻¹⁰	[15]
76	$H_3 + N \neq NH_2 + H$	3.9 × 10 ⁻¹⁰	[15]
	$n_3 + nn_3 \neq nn_4 + n_2$	$4.4 \times 10^{-9} \times (T_g/0.026)^{-1}$	[15]
78	$H_3^{\tau} + NH_2 \not \rightarrow NH_3^{\tau} + H_2$	$1.8 \times 10^{-9} \times (T_g/0.026)^{-0.5}$	[118]
79	$H_3^+ + NH \rightarrow NH_2^+ + H_2$	$1.3 \times 10^{-9} \times (T_g/0.026)^{-0.5}$	[118]
80	$H_3^+ + N_2 \rightarrow N_2H^+ + H_2$	1.9×10^{-9}	[15]
81	$N_2^s(A^3\Sigma) + H \rightarrow NH + N$	2.8 × 10 ⁻¹⁰	[95]
82	$NH^* + H_2 \rightarrow NH_2^* + H$	1 × 10 ⁻⁹	[95]
83	$NH' + N \neq N_2' + H$	1.3×10->	[118]
84	$NH^+ + N_2 \neq N_2H^+ + N$	6.5 X 10 **	[117]
85	$NH^+ + NH \rightarrow NH^+ + N$	1 X 10 -	[118]
87	$NH^+ \pm NH \rightarrow NH^+ \pm NH$	1.5 × 10 1.8 × 10 ⁻⁹	[116]
88	$NH^+ + NH \rightarrow NH + NH^+$	1.5 × 10 ⁻⁹	[119]
89	$NH^+ + NH_* \rightarrow NH^+ + N$	6 × 10 ⁻¹⁰	[117]
90	$NH^+_{+} + N \rightarrow NH^+_{+} + N$	9.1 × 10 ⁻¹¹	[118]
91	$NH_{2}^{+} + NH \rightarrow NH_{2}^{+} + N$	7.3 × 10 ⁻¹⁰	[118]
92	$NH_2^+ + NH_3 \rightarrow NH_4^+ + NH$	1.2×10^{-9}	[117]

93	$NH_2^+ + NH_3 \rightarrow NH_2 + NH_3^+$	1.2×10^{-9}	[117]
94	$NH_2^+ + H_2 \rightarrow NH_3^+ + H$	2×10^{-10}	[117]
95	$NH_3^+ + NH_3 \rightarrow NH_4^+ + NH_2$	2.1×10^{-9}	[117]
96	$NH_3^+ + NH \rightarrow NH_4^+ + N$	$7.1 \times 10^{-10} \times (T_g/0.026)^{-0.5}$	[118]
97	$NH_3^+ + H_2 \rightarrow NH_4^+ + H$	4.4×10^{-13}	[117]
98	$N_2H^+ + NH_3 \rightarrow NH_4^+ + N_2$	2.3×10^{-9}	[117]
99	N_2^+ + $H_2 \rightarrow NH_2^+$ + H	2×10^{-9}	[117]
100	$N_2^+ + NH_3 \rightarrow N_2 + NH_3^+$	2×10^{-9}	[117]
101	$N_2^+ + N \rightarrow N_2 + N^+$	1×10^{-11}	[117]
102	$H_2 + e^- \rightarrow H_2 + e^-$	from cross section	[122]
103	$H + e^- \rightarrow H + e^-$	from cross section	[96]
104	$N_2 + e^- \rightarrow N_2 + e^-$	from cross section	[99]
105	$N + e^- \rightarrow N + e^-$	from cross section	[97]
106	$NH_3 + e^- \rightarrow NH_3 + e^-$	from cross section	[57]

29 maart 2021

Ivo Classen I TM on Tungsten and Hydrogen

13⁄32

Reduced set of reactions

Reaction	Туре
$H + e^- \rightarrow H^+ + 2e^-$	Ionization
$H_2 + e^- \rightarrow H_2^+ + 2e^-$	Ionization
$N_2 + e^- \rightarrow N + N + e^-$	Dissociation
$H_2 + e^- \rightarrow H_2 v + e^-$	Vibrational excitation
$H_2v + H^+ \rightarrow H_2^+ + H$	Ion conversion
$H_2^+ + e^- \rightarrow H + H$	Dissociative recombination
$H_2 + N \rightarrow NH + H$	Atom transfer
$N_2 + H_2^+ \rightarrow N_2 H^+ + H$	Proton transfer
$N_2H^+ + e^- \rightarrow N_2 + H$	Dissociative recombination
$N_2H^+ + e^- \rightarrow NH + N$	Dissociative recombination
$NH + H^+ \rightarrow NH^+ + H$	Ion conversion
$NH^+ + e^- \rightarrow N + H$	Dissociative recombination
$H + e^- \rightarrow H + e^-$	Elastic
$\overline{H_2 + e^- \rightarrow H_2 + e^-}$	Elastic
$N + e^- \rightarrow N + e^-$	Elastic
$\overline{N_2 + e^- \rightarrow N_2 + e^-}$	Elastic

New recombination pathway: N-MAR

1) $H^+ + NH_x \rightarrow NH_x^+ + H$ 2) $NH_x^+ + e^- \rightarrow NH_{x-1} + H$

Ion conversion Dissociative recombination

1532

Experimental evidence of N-MAR effect

Density reduced: recombination

632

Nitrogen chemistry implemented in B2.5 Eunomia

Reduction of plasma pressure reproduced

Importance of N-MAR

N-MAR dominates over MAR

Section C Plasma-neutral interaction in the pre-sheath

Jonathan van den Berg et al. (submitted to Nuclear Fusion)

Plasma flux measurements

Plasma volume

Incoherent Thomson Scattering (TS): n_e , T_e Coherent Thomson Scattering (CTS): v_i , T_i TS + CTS: Γ , p^{tot} , q_{\parallel}

Target surface

Pyrometer + IR camera: T_{surf} In-target thermocouple: qIn-target Langmuir probe for $I_{sat} = e\Gamma_t$

Parallel plasma velocities

Velocity decreases with density

Same for the Mach number
$$M = \frac{v}{c_s}$$

- Almost complete stagnation during pulses
- Momentum conservation under isothermal conditions:

$$M_{u} = \frac{n_{se}}{n_{u}} = \frac{1}{M_{se}^{2} + 1} = \frac{1}{2}$$

• Lower M implies higher momentum losses in near wall region

TS and CTS results

At low n_e:

- Constant T
- Pre-sheath accellerarion toward M=1 (Bohm)

At high n_e:

- Cooling towards wall
- No acceleration / stagnation, M well below 0.5

At high $n_e \rightarrow$ losses to neutrals

(Energy and momentum losses in near wall region confirmed by comparison with target fluxes)

Losses to neutrals: 0D model

Simplified 0D model was derived to predict losses in p-n interaction region

- **Recombining neutrals** • diffuse radially out
- Recombination, ٠ ionization and CX

29 maart 2021

Loss factors depend on \rightarrow density: Substantial losses in dense conditions

Ivo Classen | TM on Tungsten and Hydrogen

 T_t (eV)

Implications of near wall p-n coupling

- Pre-sheath acceleration not experimentally observed in high densities:
 →Must occur in < 3mm
- Mach number still far below 0.5 at 3mm
 - → momentum loss region is very narrow
 - → strong gradients

Modelling:

- Near wall resolution of SOL models should be high enough: $d_{grid} < \lambda_{neutral\ mfp}$
- If grid size too course the sheath boundary condition (Bohm) might fail: M < 1

Section D Plans for VUV-LIF on Magnum-PSI: $H_2(r,v)$

Motivation

- The ro-vibrational distribution plays a major role: MAR rate can vary multiple orders of magnitude
- Direct measurement difficult, but H₂(r,v) distribution previously successfully measured in both linear plasmas and tokamaks (no current set-ups)
- → Build new diagnostic on Magnum-PSI (divertor relevant plasmas) based on proven methods: VUV-LIF and CARS
- Grant application running at Dutch Scientific Organization (NWO)

From Vankan et al.

Active spectroscopy: 3 methods

- Deploy active spectroscopy for complete exploration of rovibrational distribution of H₂ ground state:
- VUV-LIF based on Stimulated anti-Stokes Raman scattering (population v >2,J)
- Coherent anti-Stokes Raman spectroscopy (CARS): (population v ≤2,J)
- Two photon Absorption Laser Induced Fluorescence (**TALIF**) (density H atoms in ground state)

VUV-LIF principle

- Excite ground state ro-vib level to • electronically excited state
- Measure fluorescence signal •
- Scanning the laser wavelength ٠ excites different ro-vib states
- 110 to 165 nm for v=0 to v=14•

Planned VUV-LIF setup

- Laser in VUV range ٠ (down to ~ Ly α)
- Raman cell (SARS) \rightarrow
- In vacuum ٠
- **VUV** monochromators •

29 maart 2021

Vacuum window transmission ٠ (>120 nm) prevents measuring lower vibrational states (v>2)

22932

Complementary techniques: CARS

v"=3 v"=2 v"=1 v"=1

Lower vibrational states (v<=2) can be measured with CARS

Ivo Classen | TM on Tungsten and Hydrogen

- Same lasers as VUV-LIF
- No vacuum needed

29 maart 2021

 CARS: 4-wave mixing process 660-700 nm probe beam 532 nm pump beam

Complementary techniques: TALIF

TALIF:

- Density of atomic H density Also applicable to N
- Excitation: 205.14 nm (for Ly β absorption with 2 photons)
- Fluorescence: $H\alpha$

Together with existing diagnostics, these active spectroscopy methods would provide a uniquely complete picture of the (molecular) processes in divertor plasmas

Magnum-PSI welcomes your experiments!

- Well diagnosed
- Accessible
- Simple geometry
- Steady state plasma

Contact: i.g.j.classen@differ.nl

