HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Introduction into Hydrogen recycling and Tungsten sources in fusionrelevant edge plasmas

IAEA-FZJ Technical Meeting on the Collisional-Radiative Properties of Tungsten and Hydrogen in Edge Plasmas of Fusion Devices

Sebastijan Brezinsek

Institut für Energie und Klimaforschung - Plasmaphysik Forschungszentrum Jülich EURO*fusion* Project Leader WP PWIE Heinrich-Heine-Universität Düsseldorf

Nuclear Fusion

- Goal: Sustainable and CO₂-free energy source for mankind
- Thermonuclear fusion with largest reaction rate: dt fusion reaction

- Measure for fusion power in a 50:50 DT reaction is the triple product: ion density (n_i) x ion temperature (T_i) x confinement time (τ_F)
- Ignition in magnetically confined fusion plasmas achievable if:
 n_i [10²⁰ m⁻³] x T_i [10keV] x t_F [5s] ≥ 5x10²¹ keV s m⁻³ (Lawson criterion)
- Requires D and T above 10keV, but the fuel starts as D₂ or T₂ gas or as DT ice pellets entering a cold plasma in eV range. Large gradients in T, n, p!
- Exhaust of He fusion ash must be ensured at the cold plasma edge

Outline

- Motivation
- Introduction to Magnetic Confined Fusion
 - Tokamak Functionality
 - Joined European Torus (JET)
 - International Thermonuclear Experimental Reactor (ITER)
 - Power and Particle Exhaust Challenge
- Scrape-Off Layer / Divertor Physics
 - Divertor and Limiter functionality
 - Hydrogen recycling
 - Tungsten sputtering
- Conclusion

Workshop on Hydrogen in the Plasma Edge (FZJ 10/2000)

- 1. Molecular hydrogen is formed on the plasma-facing components and is recycled in the plasma edge, where it can be detected spectroscopically. The initial vibrational state of the molecule is important in determining its effect.
- 2. Theoretical modelling of the dynamics of molecules in plasmas is more complex than just a simple extension of the modelling of atoms.
- 3. Molecular spectroscopy offers new diagnostic possibilities.
- 4. The presence of molecules can have an important effect on plasma flows, especially near the plasma edge.
- 5. Although a considerable amount of molecular data is available for use in plasma modelling, there are important gaps, particularly for HD and D_2 , which at present are stopped with intelligent guesses.

Ph. Mertens and P.T. Greenland Proceeding in CPP 2002

Magnetically Confined Fusion: Tokamak Principle

- Stable plasma confinement given by a helical, twisted magnetic field structure in torus shape
- Toroidal field component given by large toroidal field coils
- Poloidal field component induced by inductively driven plasma current

Joint European Torus (JET)

- Largest tokamak currently operating: up to 4.8MA plasma current, 3.45T at max. toroidal field, P_{aux}~40MW
- Joint European Torus (JET) achieved transiently 16MW fusion power in 1997 (with graphite-based wall)
- T₂ plasma experiments currently ongoing |DT experiments with metallic walls start in a few weeks

Cold plasma at the "edges" (T_e=0.1-100eV /n_e=10¹⁷-10²¹m⁻³): Spectroscopy of (a) fuel H₂, D₂, T₂, HD, HT, DT molecules and H, D, T atoms, (b) fusion ash, He atoms and ions, and (c) intrinsic (Be, W) and extrinsic impurities (Ne, Ar, N)

Long-term Fuel Retention: main driver for the change from graphite to metallic plasma facing components

JET confirms reduction in long-term fuel retention with change from **C** to **Be/W**

gas balances under different plasma conditions

- Lifetime: erosion and melting
- Operation: performance and power exhaust

JET plasma-facing components: from **all-C** to **Be first wall & W divertor**

Conclusion: Deuterium plasma operation with graphite walls was rather Deuterium plasma with Carbon seeding resulting in some beneficial properties in the confinement in JET-C!

Next Step Device: ITER

- To demonstrate (i) scientific and (ii) technical /plasma-surface interaction feasibility of fusion
- To achieve extended burn in inductivelydriven DT plasma operation with Q=10 (400s)
- To demonstrate readiness of essential fusion technologies (incl. breeding blankets)

Major Radius: 6.2 m Minor Radius: 2.0 m Plasma volume: 840 m³ Surface area: 260m² W and 620m² Be Plasma current: 15 MA Magnetic field: 5.3 T (12 T) Energy content: 350 MJ Auxiliary heating: 70-100 MW Height: ~25 m and Diameter: ~26 m

The Power and Particle Exhaust Challenge for ITER

- He-ash is transported out of the plasma on a faster timescale than the energy confinement time
- Particles (D⁺, T⁺, He²⁺, e⁻) are transported (perp B) into the SOL and stream towards the divertor target plates at glancing incidence
- In the original scaling law for ITER (unfueled H-mode with 500MW=P_{fus}) one reaches at the target plates more than 40 MW/m²
- Divertor plasma solution needs to be adapted to meet material components limit (~10 MW/m²) : radiation-induced detachment
- To enable DT plasma operation: W concentration needs to be below 10⁻⁴ which is linked via transport to the W divertor source
- Prediction of DD and DT operation (2035) via modelling: SOLPS-ITER
 => real DT mix modelling pending / T₂ data in EIRENE?

JÜLICH Forschungszentrum

Outline

- Motivation
- Introduction to Magnetic Confined Fusion
 - Tokamak Functionality
 - Joined European Torus (JET)
 - International Thermonuclear Experimental Reactor (ITER)
 - Power and Particle Exhaust Challenge
- Scrape-Off Layer / Divertor Physics
 - Divertor and Limiter functionality
 - Hydrogen recycling
 - Tungsten sputtering
- Conclusion

Simple Model for the Edge Plasma

Edge Plasma Emission Interpretation

Colour camera: here mainly $D\alpha + D_2$ Fulcher band emission

Hydrogen Recycling: Balmer-Line Emission I Hα $D\alpha$ / Selected potential Energy level curves of H₂ diagram of H units] 20 #89170 T_~1500 K 15 $H(n=1) + H^{+}$ 0.156 eV ± 0.015 eV ± 0.02 %] Balmer- α intensity [arb. +0.381 e\ d H(n=1) + H(n=2)# 89170 33.35 % ± 0.02 % 15 10 th. data: 90.00 eV [3.65 %] n = 2Energy [eV] exp. data: Energy [eV] Fulcher # 89155 $EF ^{1}\Sigma^{+}$ 0.252 eV ± 0.060 eV 10 દ્~570 K 5 ± 2.67 %] [42.46 3.420 eV ±0.396 eV # 89155 [50.54 % ± 2.67 % th data: $b^{3}\Sigma_{u}^{+}$ 90.00 eV [7.00 %] H (n=1) + H (n=1) exp. data: vibrationa 5 levels T_e~40eV $|\mathbf{H}^{-}|$ $X^{1}\Sigma_{\alpha}^{+}$ B_{fit}=2.25 T triplet states singlet states 0 5 656.0 656.2 656.4 656.6 655.8 λ **[nm]** 2 3 5 s TEXTOR U. Fantz et al. Nuclear distance [Å]

- Very cold atoms (~0.3eV) in front of graphite surfaces at T_{surface}~500K and T_e>> 10 eV plasmas observed
- Atom production mainly via break-up of molecules originating from the wall (graphite)
- Surface conditions can impact the line shape (atom energy) / change of atom to molecular release ratio
- Plasma conditions can impact the line shape and (atom energy) / change of destruction path

Hydrogen Recycling: Balmer-Line Emission II

Attached, low recycling

Te ≥10 eV

electron impact processes dominant

D₂ Molecules: Rotational Population

D₂ Molecules: Vibrational Population

- Vibrational population in upper state via Fulcher bands
- Linked to ground state via collision-radiative models CRM (EIRENE, YACORA) for H₂ [and D₂] and T_e in divertor
- Direct measurement of ground state preferable (VUV)
- Surface materials can impact on initial distribution: e.g. a-C:H layers, Ta and cause non-Boltzmann deviations

JÜLICH Forschungszentrum

- Conversion of Fulcher band photons into particles via photon efficiencies for the entire electronic transition
- CRMs or experiment required for (D/XB)

B. Heger et al., U. Fantz et al.

S. Brezinsek PPCF 2005

PT Greenland FZJ report

 Doable for ionizing plasma conditions, but challenging for recombining plasma conditions

D₂ molecules in JET with W Divertor

population

17

Simple Model for the Edge Plasma II

- Formation of a neutral cushion in front of the target plate / loss of momentum of impinging plasma ions along B: Recycling, + Radiation + Friction + Recombination ...
- Shall prevent ions to hit the target plate and deposit power / erosion of target plate by impinging ions

JET L-mode: Complete Detachment in Divertor due D₂ JULICH

• During a fueling ramp in the divertor one passes all steps from recycling via "ion flux roll over" to detachment

M. Groth et al. Nucl Fus. 2013

Comparison of Relevant Processes in Detachment

- Competition between different processes sensitive to the plasma conditions => Collisional-radiative models
- Sensitive to (ro-vibrational) ground state population | need for rotational-resolved data
- Sensitive to isotopes | need for isotope-resolved data

The Challenge of W in Fusion Devices

JÜLICH Forschungszentrum

- High radiation potential (core cooling)
- Prone to accumulate in core (transport)
- Low concentration in core is permitted (ITER ~10⁻⁴ / DEMO ~10⁻⁵)
- W control mainly via spectroscopic tools by using divertor cooling by seeding (source) and central heating (core) as actuator

Physical Sputtering of W

- W sputtering by intrinsic (Be) or seeding impurities (Ne, Ar, N) above threshold energy E_{th}
- Operation in detached divertor inhibits W sputtering

W source spectroscopy focused on WI emission at 400.875nm with experimental calibration in cold plasma conditions => S/XBs

- Difference provides local W balance: eroded, re-deposited, and transported away
- Erosion of W is in general low | local re-deposition high in present-day devices
- JET experiment at high fluence allowed comparison of both methods: >95 % local re-deposited [S. Brezinsek NF 2019]

Challenges in W Spectroscopy and Atomic Data

Conclusion

Hydrogen recycling and needs for improved CRM

- Need more vibrationally resolved data than currently available
- Need to have rotationally resolved data
- Need to have isotopically resolved data
- Ensure consistency in present data (range of fusion application)
- Synthesize molecular spectrum in model to compare with experiment

Tungsten erosion and needs for W CRM

- Need to cover complex ground state as well as metastable
- Need to cover low ionization states of W (W, W⁺, W²⁺, W³⁺ etc.) relevant for divertor
- Ensure consistency in present data (in the range of fusion application)
- Synthesize atomic spectrum in model to compare with experiment

This meeting will cover the actual status, shall stimulate discussions, identify needs (fusion community) and capabilities in the A&M data community

Spare

T_2 Fucher band with HT minority measured in JET-ILW T_2 plasmas

ELM-induced W Sputtering in Detached Conditions

Inter-ELM W source eliminated when impact energies below the threshold for impurities

S.Brezinsek et NF 2019 A. Kirchner et a PPCF2019

D₂ Fulcher Band: 3p ${}^{3}\Pi_{u}^{+}$ > 2s ${}^{3}\Sigma_{g}^{-}$

Molecules in the SOL and divertor plasmas of fusion devices!

Divertor Detachement with N₂ Seeding in H-mode

- Full detachment at outer target plate: sequence of power detachment (nitrogen radiation), momentum detachment (D ion-neutral friction) and particle detachment (D volume recombination) reproduced
- Compatibility with power loads and W source for long-pulse operation like in ITER
- Nitrogen radiates predominantly in divertor whereas neon in the edge layer of JET

ITER: Divertor Plasmas Solution: SOLPS-EIRENE

31

- Plasma solution with SOLPS-EIRENE with C exists / Update: SOLPS-ITER for Ne, N₂ and D plasmas
- Self sustained dense, cold plasma layer ($\approx 1 3 \text{ eV}$) formed in front of divertor components
- Plasma flux drops, despite increased density. Momentum loss predicted.
- ELM burn through not considered / Atomic and molecular data for T, DT not included

Divertor plasma density m⁻³, log scale, 10¹⁸-10²⁰

Divertor electron temperature eV, lin. scale, 0 – 50 eV

26.03.2021

ITER: Self-sustained Neutral Gas Cushion H and H₂

Why do we bother with W?

Photon Efficiency and Population of 3p ${}^{3}\Pi_{u}$

- CRM for hydrogen and deuterium exist meanwhile (e.g. in EIRENE)
- Electronically and vibrationally resolved data available

Improvement in CRM with Vibrationally Resolved Data

28.03.2021

Simulation of Intra- and Inter-ELM Sputtering of W

- ERO-modelling (MC+impurity transpot) coupled with PIC simulation of ELM events (1keV, 500ms) reproduces the W sputtering by burn-through in otherwise detached conditions
- More than 95% of W is locally re-deposited in the model => agrees with experiment

Composition of Recycled Deuterium: Ionizing Plasma 🥑 JÜLICH

- High D⁺ flux to the wall (10²⁴ D⁺ s⁻¹m⁻²), surface saturation in ms and almost 100 % recycling
- Thermal release of D₂ od D from the (graphite) wall and about 10% reflected fast particles

