Dirac R-matrix calculations (electron-impact excitation/ionisation) in support of tungsten plasma diagnostics

## Connor Ballance (Queen's University of Belfast)

Collaborators : Nicole Dunleavy, Ryan Smyth, Stuart Loch, Curtis Johnson, David Ennis and M O'Mullane

Queen's University of Belfast / Auburn University/ Strathclyde University

**IAEA** Technical meeting April 2021

Funded in part by the UK STFC consolidated astrophysics grant to Queen's Belfast

# Overview

• Motivation : Provide the atomic structure,

electron-impact excitation/ionisation rates used for temperature and density diagnostics (+ impurity influx) for W I and W II

- •Method : Quick description of relativistic R-matrix theory : excitation
  - : ionisation
  - : Collisional-radiative modelling
  - : SXB
- W I, W II (NEW) : excitation
- W I : ionisation (ground and excited state)
- Conclusions, uncertainty, future directions

High Z materials are leading candidates for first wall materials, especially divertor region

- Allowable impurity concentration lower for high-Z materials
  - High-Z materials radiate much more than previously used materials
  - Radiation significant enough to denigrate plasma performance
    - Concentration needs to be less than ~1E-4 (Putterich)
  - Need to accurately quantify and minimize erosion of wall



## **R-matrix/RMPS in a nutshell**



$$\Psi_k(x_1 \dots x_{N+1}) = A \sum_{ij} c_{ijk} \bar{\Phi}_i(x_1 \dots x_N, \hat{r}_{N+1} \sigma_{N+1}) u_{ij}(r_{N+1}) + \sum_j d_{jk} \phi_j(x_1 \dots x_{N+1})$$

## **Electron-impact excitation of neutral tungsten**





# We must exploit High Performance Computing resources

- Electron-impact calculations involves hundreds of level-resolved target states and thousands of close-coupled channels → large Hamiltonian matrices.
- Huge effort goes into the parallel construction of hundreds of Hamiltonians, which require diagonalisation (now employing GPU accel.)

Compact Toroidal Hybrid (CTH) has been an invaluable test of the electron-impact excitation dataset

- The emission was indeed strongest in the UV!
- We identified 30 new tungsten spectral emission lines.
- Results in Johnson et al., Plasma Physics and Controlled Fusion, Volume **61**, 095006 (2019).





CTH cross section with probe and UV spectrometer line of sight



Temperature derived from lines within R Smyth W I adf04 file and those measured with a Langmuir probe on the Auburn CTH experiment.



## Overview of W II





**Figure 1.** Energy level spectrum of W II organised by electronic configuration (For the first 5 configurations which contribute to the lowest-lying levels). Each horizontal line designates a specific fine structure level (taken from the NIST database).

## To assure spectroscopic wavelengths, pre-diagonalisation of Hamiltonian, energy levels are shifted to experimental values. Easy for low levels, not so for excited states.

W II calculation (NEW), currently being tested against CTH spectra at 30 eV and and a density of 1e+12 cm^-3.



W II calculation (NEW), currently being tested against CTH spectra at 30 eV and and a density of 1e+12 cm^-3.



W II calculation (NEW), currently being tested against CTH spectra at 30 eV and and a density of 1e+12 cm^-3, but at higher wavelengths



# **Excitation Summary**

- WI (published, Ryan Smyth et al 2018) adf04 (Maxwellian averaged collision strength) 10.1103/PhysRevA.97.052705
- W II (work completed, Nicole Dunleavy adf04 under testing)
- W III ( To be done !)
- W IV (Ballance et al, adf04 available,2013)
   DOI: 10.1088/0953-4075/46/5/055202)

If we first consider the ground and meta-stable ionisation for the simpler cases of hydrogen and lithium, what uncertainties should we expect as a function of principal quantum number.

# **RMPS** : ionisation

#### It is the accuracy of the excited states that can prove problematic



# Ionisation: Increase in complexity

• Unlike 'one-electron' systems the ground-state

of WI: 4f^14 5d^4 6s^2 requires direct ionisation of 6s and 5d ionisation

- $\rightarrow$  5d^4 6s nl where n=7-14, l=0-6
- $\rightarrow$  5d^3 6s^2 n'l' where n=7-14, l=0-6

which amounts to several hundred TERMS in

a close coupling expansion and Hamiltonians in excess of 360,000 by 360,000

## The standard techniques, DW, Cowan HFR, configuration average TDCC, RMPS work for the groundstate .... but for excited states ....





Fig. 1 Total ionization cross sections of W atoms plotted as a function of incident electron energy, solid curve: present DWA results in HULLAC [19], dashed and dotted curves: present DWA results in Cowan formalism with finestructure and configuration mode; dash-dotted curve: results of [12] and dash-dot-dotted curve: results of [11].





Fig. 3 Total ionization cross sections of W<sup>+</sup> ions plotted as a function of incident electron energy, dash-dot-dotted curve: results of [10]; dash-dotted curve: results of [8]; solid circles and hollow triangles: measurements [14] and [13]; other curves are the same as Fig. 1.

#### Unfortunately, the effective ionisation rates is completely dominated by excited state ionisation !

Ultimately, the electron-impact excitation and ionisation rates are **both** required if we to produce Generalised Collisional Radiative (GCR) coefficients that are both temperature and density dependent.



## Effective ionization rate coefficient vs density and electron temperature



Fig. 8. Effective ionization rate coefficient for the ionization process  $e + Li (1s^2 2s 2S) \rightarrow Li^+ (1s^2 S) + 2e$  as a function of electron temperature and density. Note that the density dependence comes in through the role of ionization from excited states. Loch et al., ADNDT, 92 813 (2006)

IAEA A+M Data, Nov 18-20, 2009

## Quantifying Wall Erosion impurity influx, culmination of collisional processes and their associated Uncertainty.

- The intensity of a spectral line can be related to its influx rate [Behringer PPCF 31 2059 (1989)]
- The number of ionizations per photon (S/XB) is

directly proportional to the impurity influx  

$$\Gamma = \int_{0}^{\infty} N_{e} N^{z} S^{z \to z+1} dx = \int_{0}^{\infty} N_{e} \frac{S^{z \to z+1}}{A_{i \to j} \frac{N_{i}}{N^{z}}} \left(A_{i \to j} \frac{N_{j}}{N^{z}}\right) N^{z} dx$$

$$= \int_{0}^{\infty} N_{e} SXB_{i \to j}^{z} \left(A_{i \to j} \frac{N_{j}}{N^{z}}\right) N^{z} dx$$
where  $SXB_{i \to j}^{z} = \frac{S^{z \to z+1}(N_{e}, T_{e})}{A_{i \to j} \frac{N_{i}}{N^{z}}(N_{e}, T_{e})}$ 

Note electron temperature and density dependence

# **Conclusions/Future Directions**

- Electron-Excitation : in reasonable shape, has predictive and diagnostic capability. Only W III remains for W I-IV to be complete
- Electron-impact ionisation : Difficult to achieve a sufficiently accurate representation of excited states. This is the dominant contribution to effective ionisation rate
- We hope to constrain the uncertainties in SXB ratios

# Future Directions : Uncertainty propagation through models

