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Overview

* Motivation : Provide the atomic structure,
electron-impact excitation/ionisation
rates used for temperature and density
diagnostics (+ impurity influx) for W |
and W |

*Method : Quick description of relativistic R-matrix

theory : excitation
. lonisation
. Collisional-radiative modelling
: SXB

*W I, WII (NEW) : excitation

* W : ionisation (ground and excited state)

* Conclusions , uncertainty, future directions



High Z materials are leading candidates for first wall materials, especially divertor region

e Allowable impurity concentration lower for high-Z materials

* High-Z materials radiate much more than previously used materials

* Radiation significant enough to denigrate plasma performance

* Concentration needs to be less than ~1E-4 (Putterich)

* Need to accurately quantify and minimize erosion of wall
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R-matrix/RMPS in a nutshell
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Electron-impact excitation of neutral tungsten

PHYSICAL REVIEW A

covering atomic, molecular, and optical physics and quantum information
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ABSTRACT -

MNeutral tungsten is the primary candidate as a wall material in the divertor region of the International
Thermonuclear Experimental Reactor (ITER). The efficient operation of ITER depends heavily on
precise atomic physics calculations for the determination of reliable erosion diagnostics, helping to
characterize the influx of tungsten impurities into the core plasma. The following paper presents
detailed calculations of the atomic structure of neutral tungsten using the multiconfigurational Dirac-
Fock method, drawing comparisons with experimental measurements where available, and includes
a critical assessment of existing atomic structure data. We investigate the electron-impact excitation
of neutral tungsten using the Dirac R-matrix method, and by employing collisional-radiative models,
we benchmark our results with recent Compact Toroidal Hybrid measurements. The resulting
comparisons highlight alternative diagnostic lines to the widely used 400.88-nm line.



Snapshot of W |
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We must exploit High Performance
Computing resources

* Electron-impact calculations involves hundreds
of level-resolved target states and thousands
of close-coupled channels — large Hamiltonian
matrices.

* Huge effort goes into the parallel construction
of hundreds of Hamiltonians, which require

diagonalisation (now employing GPU accel.)



Compact Toroidal Hybrid (CTH) has been an invaluable test
of the electron-impact excitation dataset

* The emission was indeed
strongest in the UV!

* We identified 30 new tungsten
spectral emission lines.

* Results in Johnson et al., Plasma |
Physics and Controlled Fusion, |
Volume 61, 095006 (2019).

CTH cross section with probe
and UV spectrometer line of sight

Collision radiative modelingat T, =8eV, n., = 1*¥10¥ m3
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Temperature derived from lines within R Smyth W | adf04 file and those
measured with a Langmuir probe on the Auburn CTH experiment.
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Overview of W I
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Figure 1. Energy level spectrum of W11 organised by electronic configuration (For the first 5 configurations which contribute
to the lowest-lying levels). Each horizontal line designates a specific fine structure level (taken from the NIST database).

To assure spectroscopic wavelengths, pre-diagonalisation of Hamiltonian, energy levels
are shifted to experimental values. Easy for low levels , not so for excited states.



W Il calculation (NEW) , currently being tested against CTH spectra at 30 eV and
and a density of 1e+12 cmA-3.
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W Il calculation (NEW) , currently being tested against CTH spectra at 30 eV and
and a density of 1e+12 cmA-3.
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W Il calculation (NEW) , currently being tested against CTH spectra at 30 eV and
and a density of 1e+12 cmA/-3, but at higher wavelengths
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Excitation Summary
* W1 (published , Ryan Smyth et al 2018)

adf04 (Maxwellian averaged collision strength)
10.1103/PhysRevA.97.052705

* W II (work completed, Nicole Dunleavy
adf04 under testing)

* WIIl ( To be done !)

* W IV (Ballance et al, adf04 available,2013)
DOI: 10.1088/0953-4075/46/5/055202)



Cross Section (Mb)

If we first consider the ground and meta-stable ionisation for the simpler cases
of hydrogen and lithium, what uncertainties should we expect as a function
of principal quantum number.

RMPS : ionisation

It is the accuracy of the excited states that can prove problematic
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lonisation: Increase in complexity

* Unlike ‘one-electron’ systems the ground-state

of W | : 4i*14 5d”*4 6s"2 requires direct
ionisation of 6s and 5d ionisation

— 5d* 6s nl where n=7-14, |=0-6
— 5d*"3 682 n'l’ where n=7-14, |=0-6
which amounts to several hundred TERMS in

a close coupling expansion and Hamiltonians
in excess of 360,000 by 360,000



The standard techniques, DW , Cowan HFR, configuration average TDCC , RMPS
work for the groundstate .... but for excited states ....

Plasma and Fusion Research: Regular Articles Volume 13, 3401026 (2018)
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Fig. 1 Total ionization cross sections of W atoms plotted as a Fig.3 Total ionization cross sections of W* ions plotted as

function of incident electron energy, solid curve: present
DWA results in HULLAC [19], dashed and dotted curves:
present DWA results in Cowan formalism with fine-
structure and configuration mode; dash-dotted curve: re-
sults of [12] and dash-dot-dotted curve: results of [11].

a function of incident electron energy, dash-dot-dotted
curve: results of [10]; dash-dotted curve: results of [8];
solid circles and hollow triangles: measurements [14]
and [13]; other curves are the same as Fig. 1.

Unfortunately, the effective ionisation rates is completely dominated by excited state ionisation !



Ultimately, the electron-impact excitation and ionisation rates are
required if we to produce Generalised Collisional Radiative (GCR)
coefficients that are both temperature and density dependent.

Generalized collisional-radiative
(GCR) coefficients

* Effective ionizationrates i niationrates
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Effective ionization rate coefficient vs density and
electron temperature

Li

Density dependence
comes in through the role of
ionization from excited
states.
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Fig. 8. Effective wmzation rate coeflicent for the womzation proosss
e+ Li (ls: 2s JS} - Li" (Is: l.'-"a'.} + 2¢ as a function of cloctron tempemture
and density. Note that the density dependence comes in through the ole

of omzation from excited states. Loch et al., ADNDT, 92 813 (2006)
IAEA A+M Data, Now 18-20. 2009



Quantifying Wall Erosion impurity influx, culmination
of collisional processes and their associated
Uncertainty.
* The intensity of a spectral line can be related to its
influx rate [Behringer PPCF 31 2059 (1989)]
* The number of ionizations per photon (S/XB) is

directly proportional to the impurity influx
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Conclusions/Future Directions

* Electron-Excitation : in reasonable shape,
has predictive and diagnostic capability. Only
W lIl remains for W |-V to be complete

* Electron-impact ionisation : Difficult to achieve
a sufficiently accurate representation of
excited states. This is the dominant
contribution to effective ionisation rate

* We hope to constrain the uncertainties in

SXB ratios



Future Directions : Uncertainty
propagation through models

Baseline Studies

Sensitivity Studies

* Uncertainty is quantified as the difference

between different theoretical approaches Guides choices

made in more

- Representative of differences in the literature | &laborate models

—_— -

+ Quickly provides a generous
uncertainty on an atomic dataset, while
providing the correct temperature and
density trends of more elaborate
calculations.

+ May not reflect the tighter constrained
uncertainties derived from more elaborate
calculations.

Reassess the guality
of the baseline rates
and confirm baseline
uncertainty range.

-

* Fundamental atomic structure and
collisional rates remain uncorrelated.

* Uncertainty is determined from the
sensitivity of the calculation to key input
parameters.

+ Can produce fully correlated uncertainties.
- The objective choice of variation in the input
parameters that reflects meaningful physical

values remains difficult

*Does not determine the absolute uncertainty
between methods.

« More time and resource intensive.
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Monte-Carlo line ratio diagnostics

Monte-Carlo ionization balance

ncertainties on
Te and Ne

T

Uncertainties on
abundances and
lonization age
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