Consultancy Meeting on Planning a CRP on Tungsten lons in Magnetic Confinement Fusion Plasmas, 29-30 Aug. 2024, IAEA Vienna, Austria

Tungsten Atomic Data Needs in ASIPP and Relevant Activities

ZHANG Ling ^{1*}, MORITA Shigeru ^{2,1}, MITNIK Darío ^{3,1}, DING Xiaobin ⁴, YAO Ke ⁵, YANG Yang ⁵, XIAO Jun ⁵, LIU Haiqing ¹

¹ Institute of plasma physics, Chinese Academy of Sciences, Hefei 230031, China
 ² National Institute for Fusion Science, Toki 509-5292, Gifu, Japan
 ³ Universidad de Buenos Aires, Argentina
 ⁴ Northwest Normal University, Lanzhou 730070, China
 ⁵ Institute of Modern Physics, Fudan University, Shanghai 200433, China

Acknowledgements: This work was supported by the National Magnetic Confinement Fusion Energy R&D Program of China (Grant Nos. 2022YFE03180400, 2022YFE03020004), National Natural Science Foundation of China (Grant No. 12322512), and Chinese Academy of Sciences President's International Fellowship Initiative (PIFI) (Grant Nos. 2024PVA0074, 2025PVA0060).

*Email: zhangling@ipp.ac.cn 29 August 2024

Outline

- Tungsten and High-Z impurity source in EAST
- Impurity-related spectroscopic diagnostics in EAST
- Tungsten data needs and other important issues
- Relevant Activities
- Summary

Outline

- Tungsten and High-Z impurity source in EAST
- Impurity-related spectroscopic diagnostics in EAST
- Tungsten data needs and other important issues
- Relevant Activities
- Summary

Upgrade of EAST divertors & first wall

Dr. ZI Pengfei

Carbon PFC (2008) Max. 2 MW/m²

noblock

UPPER DIVERTOR (2012)

First W/Cu Divertor (Monoblock)

High / Low field side first wall (2010)

TZM (Titanium-Zirconium-Molybdenum) alloy

Metal PFC (2024) Max. 10 MW/m²

EAST major Limiter and antenna guard limiter

Guard limiter for LHW antenna

> LHW / ICRF antenna: Cu / Fe
> Guard limiters: C → W (since 2018)

Major limiter in EAST is located between port G and H

Tungsten and high-Z impurity

High-Z impurity induced by heating system

RF Heating

[ICRF and LHW] Interaction with antenna and guard limiter: when the RF wave does not couple effectively to the edge plasma, the antenna and guard limiter have a strong interaction with accelerated particles. Resultantly, materials of the antenna and guard limiter are sputtered.

[ICRF and LHW] Hot spot effect: non-uniform energy dissipation of RF waves creates a localized high-temperature region. It causes release of plasma facing materials. The effect becomes particularly significant in high power long-pulse discharges.

[ICRF and ECRH] Resonance effects: when particles are accelerated above certain threshold energy, those orbits deviate from the last closed flux surface (LCFS) and collide with first wall.

Neutral Beam Injection

Interaction with first wall: high-energy neutral beams penetrate the plasma in low-density discharges and interact with first wall.

Trapped particles: high-energy trapped particles interact with first wall.

Beam divergence: different beam divergences originated in full, half and onethird energies of hydrogen atom may enhance the interaction with plasma facing components around injection port.

Summary of the particle species

Working particle H, D, T (in the future)

Intrinsic & extrinsic impurities

- Wall conditioning: He, Li, B, Si
- Vacuum condition: N, O
- Reciprocating Probe injection: C
- Guess puffing: Ne, Si, Ar
- High power auxiliary heating: C, Fe, Cu, Mo
- Giant ELMs: Mo, W ...

Outline

- Tungsten and High-Z impurity source in EAST
- Impurity-related spectroscopic diagnostics in EAST
- Tungsten data needs and other important issues
- Relevant Activities
- Summary

Overview of tungsten spectroscopy diagnostics in EAST

EAST	Capability	Diagnostic
	Upper & lower div. W source - W ⁰ (4009Å)	Space-resolved VIS
Divertor	Upper div. W source (2D) – W ⁰ (4009Å, 4295Å, 5053Å) – W ¹⁺ (4218Å, 4348Å)	Space-resolved VIS (2D)
SOL	W influx (W ³⁺ - W ⁶⁺ : 500-1500Å)	VUV survey
(p=1.0-1.05)	W influx (W ³⁺ -W ⁶⁺ : 200-500Å)	EUV survey
Pedestal / edge	W influx & density - W ⁷⁺ -W ²⁰⁺ : 150-260Å	EUV survey
Bulk plasma (ρ⊴0.7)	W density profile - W ²⁴⁺ -W ⁴⁵⁺ : 15-140Å	Space-resolved EUV

High-performance impurity spectroscopy diagnostic platform

Fast-time-response EUV spectrometers

(5ms/frame, 5-500Å, W³⁺-W⁴⁵⁺)

		EUV_Short	EUV_Long_a	EUV_Long_c	EUV_Long_b
,	Capability	5-138 Å	20-500 Å		
^	Operation	5-50 Å	40-180 Å	160-385 Å	245-500 Å
	lons	He*, Li*-Li ²⁺ , C ²⁺ -C ⁵⁺ , O ²⁺ -O ⁷⁺ , Ne*-Ne ⁹⁺ , Si ⁴⁺ -Si ¹¹⁺ , Ar ⁹⁺ -Ar ¹⁵⁺ , Fe ⁴⁺ -Fe ²³⁺ , Cu ⁹⁺ -Cu ²⁸⁺ , Mo ⁴⁺ -Mo ³¹⁺ , W³⁺-W⁶³⁺ ,			

Space-resolved EUV spectrometers (15-200ms/frame, 5-500Å, ΔZ=90cm (ρ≤0.7))

	λ range	Temporal Reso.	Spatial Reso.	Viewing range	Detector	
UV_Short2	5-130 Å	15 ms/frame	≥0.3 cm	±25 cm	CMOS	
EUV_Long2	30-520 Å	200 ms/frame	≥0.8 cm	±45 cm	CCD	
ons (ρ≤0.7)	0.7) W ²⁴⁺ -W ⁶³⁺ , Mo ²⁴⁺ -Mo ³¹⁺ , Cu ¹⁹⁺ -Cu ²⁶⁺ , Fe ¹⁸⁺ -Fe ²³⁺					

- ✓ Y.X. Cheng *Rev. Sci. Instrum.* 93 (2022)123501
- ✓ Y.X. Cheng Nuclear Ins. and Methods in Physics Research, A 1057 (2023) 168714

Space-resolved VISASIPP spectrometers

(1D: ΔZ=140cm; 2D: 10x11, div. & edge)

Spectrometers (MK-300) – Entrance slit: 0.01-4.0mm
 Gratings: 2400, 1200, 300 g/mm Detector: Andor Marana CMOS 2048 x 2048 pixel, 11µm, 22.53 x 22.53 mm

Deuterium	
D_{β}/D_{γ} during detachment - 1D & 2D,1200 g/mm	
D ₂ Fulcher-α band - 2D,1200/2400 g/mm	
Verification of div. conf. (Snowflake, Fish tail) – 2D, 300/1200 g/mm	

Emission lines from W²²⁺-W⁴⁵⁺ in bulk plasma

- 78 lines from W²²⁺ W⁴⁵⁺ ions existed in bulk plasma are observed at 10-140 Å
- Several strong, isolated lines and W-UTAs are candidates for tungsten transport study

 W.M. Zhang *et al.*, Spectroscopic analysis of tungsten spectra in extreme-ultraviolet range of 10-480 Å observed from EAST tokamak with full tungsten divertor (submitted to Physica Scripta)

Emission lines from W³⁺-W²⁰⁺ ions at plasma edge

- 89 lines from W³⁺ W²⁰⁺ ions existed in plasma edge are observed at 140-480 Å
- 52 new lines are found, probably from W⁴⁺ - W⁴¹⁺ ions
- Several strong, isolated lines and W-UTAs are candidates for tungsten transport study

 W.M. Zhang et al., Spectroscopic analysis of tungsten spectra in extreme-ultraviolet range of 10-480 Å observed from EAST tokamak with full tungsten divertor (submitted to Physica Scripta) ASIPP

Observation W ion distribution helps to confirm line identification

- Observation of vertical line intensity profiles of EUV spectra from various tungsten ions.
- Different peak positions indicate different W charged states (W-UTA @T_{e0}=4.5keV).

Accumulation of emission line database of Mo

- ✓ Line emissions from Mo^{24+} Mo^{31+} (E_i=1263-1791 eV)
- ✓ Line emissions from Mo⁴⁺ Mo²³⁺ (E_i =54-1082 eV)
- Mo-UTA from Mo¹⁴⁺-Mo²⁴⁺ at 15-45 Å
- Strong Mo-UTA at 65-90 Å
- Isolated lines from Mo¹⁶⁺-Mo³¹⁺ at 70-130 Å,
 e. g. Mo³⁰⁺ at 116 Å, Mo³¹⁺ at 127.868, 176.648 Å

Accumulation of emission line database of Cu and Fe

- ✓ Cu¹⁹⁺ Cu²⁶⁺ (E_i=1691-2587 eV)
- ✓ Cu⁹⁺ Cu¹⁸⁺ (E_i=232-671 eV)
- Cu¹⁹⁺ Cu²⁰⁺ at 10-14 Å, Cu²¹⁺ Cu²⁵⁺ at 80-110 Å
- Cu¹⁰⁺ Cu¹⁵⁺ at 130-165 Å, Cu¹⁶⁺ Cu¹⁸⁺ at 180-305 Å

- ✓ Fe¹⁶⁺ Fe²³⁺ (E_i=1263-2046 eV)
- ✓ Fe^{4+} Fe^{15+} (E_i=175-489 eV)
- Fe¹⁶⁺ Fe²⁰⁺ at 12-17 Å, Fe¹⁷⁺ Fe²¹⁺ at 90-150 Å
- Fe⁷⁺ Fe¹⁴⁺ at 170-285 Å, Fe⁴⁺ Fe⁶⁺ at 300-450 Å ¹⁴

Outline

- Tungsten and High-Z impurity source in EAST
- Impurity-related spectroscopic diagnostics in EAST
- Tungsten data needs and other important issues
- Relevant Activities
- Summary

Key role of W atomic data in fusion plasma

Effective W atomic data essential for quantitative analysis

- W cooling rate (L_w)
- Cooling effect of $W \rightarrow P_{rad} \rightarrow Fusion$ Power balance
 - W concentration (C_w) evaluation with observation of P_{rad}
 - P_{rad}(W) with certain C_W
- Cooling effect of W \rightarrow change T_e gradient \rightarrow W transport (accumulation)
- Photo Emissivity Coefficient (PEC^{Wq+})
- Evaluation of **C_w using single W line** (with known fractional abundance)
- W ion density profiles in bulk plasma ($n_{W^{q+}}(r)$, W²⁴⁺- W⁶³⁺)
- Ionization Event per Emitted Photo (S/XB^{Wq+})
- Evaluation of W influx in divertor (W⁰, W⁺, W²⁺)
- Evaluation of W influx at plasma edge (~ W³⁺ W²⁰⁺)

• Cooling rate (Radiation power coefficient) $L_W(T_e, n_e) = \sum_q L_W^{q+}(T_e, n_e) N_{W^{q+}} / N_W$

• Radiation power loss by W $P_W = \int L_W(T_e, n_e) n_e(r) n_W(r) dV$

• Evaluation of c_W from chord-integrated line intensity, e. g. $I^{W44+}-I^{W45+}$ $I^{W^{q+}} = \int n_{W^{q+}}(l) PEC^{W^{q+}}(l)n_e(l)dl$ $= \int c_W(l)n_e(l)FA^{W^{q+}}(l) \cdot PEC^{W^{q+}}(l)n_e(l)dl$ $= \int c_W f_{c_W}(l)n_e(l)FA^{W^{q+}}(l) \cdot PEC^{W^{q+}}(l)n_e(l)dl$ $c_W = I^{W^{q+}}/\int f_{c_W}(l)FA^{W^{q+}}(l)PEC^{W^{q+}}(l)n_e^2(l)dl$

$$\Gamma = n_e S_\sigma \int \frac{\epsilon_{jk}(\xi)}{A_{jk} n_e \mathcal{F}_{j\sigma}} d\xi = \frac{S_\sigma}{A_{jk} \mathcal{F}_{j\sigma}} \times \int \epsilon_{jk}(\xi) d\xi$$

$$\Gamma = \frac{S_\sigma}{A_{jk} \mathcal{F}_{j\sigma}} \times \int \epsilon_{jk}(\xi) d\xi \equiv S \mathcal{X} \mathcal{B}_{jk} \times \int \epsilon_{jk}(\xi) d\xi$$

$$= S \mathcal{X} \mathcal{B}_{jk} \times I_{jk}$$

$$S \mathcal{X} \mathcal{B}_{jk} = \frac{\Gamma}{I_{jk}} = \frac{S_\sigma}{A_{jk} \mathcal{F}_{j\sigma}}$$

$$6$$

Limited application of W atomic data in quantitative analysis

Other important / fundamental issues

Absolute intensity calibration in EUV and X-ray range

- Calculation of bremsstrahlung radiation intensity using Z_{eff} from VB
- Enough number of line pairs
- <u>Calculation of energy-resolved radiation in full range</u>
 - For calibration of Soft X-ray imaging and bolometer system
- High ionization stage W ions toward future burning plasma
 - Observation of emission lines from Wq+ with q>45
 - PEC data for these lines
- Low ionization stage W ions for edge W influx
 - Observation of emission lines from Wq+ with q=3-20
 - S/XB data for these lines

Outline

- Tungsten and High-Z impurity source in EAST
- Impurity-related spectroscopic diagnostics in EAST
- Tungsten data needs and other important issues
- Relevant Activities
 - S/XB calculation
 - Tungsten research at NWNU
 - Tungsten research at Fudan University
- Summary

S/XB calculation and influx evaluation for W⁵⁺ ion

ASIPP

The S/XB calculation for W⁵⁺ ion:

- S is obtained with a full detailed Distorted-Wave calculation, including Excitation-Autoionization up to n=13
- > A and Q are from HULLAC, AutoStructure and FAC
- CRM include full levels (430 levels)
- > Two metastable levels included in $F_{j,\sigma}$

	λ (Å)		Transitions		
Wq+	This work	Database	Relative (counts/5ms)	Lower level	Upper level
W VIII (W ⁷⁺)	201.700 ± 0.02	201.739 ^a	11720 ^A	4f ¹³ 5p ^{6 2} F _{7/2}	4f ¹³ 5p ⁵ 5d 9/2
	216.351 ± 0.01	216.219 ^b	34550 ^A	4f ¹⁴ 5p ^{6 1} S ₀	4f ¹⁴ 5p ⁵ (² P° _{1/2})5d (1/2,3/2)°1
W VII (W ⁶⁺)	223.836 ± 0.01	223.846 ^b	5872 ^A	4f ¹⁴ 5p ^{6 1} S ₀	4f ¹⁴ 5p ⁵ (² P° _{3/2})6s (3/2,1/2)° ₁
	261.317 ± 0.01	261.387 ^b	13900 ^A	4f ¹⁴ 5p ^{6 1} S ₀	4f ¹⁴ 5p ⁵ (² P° _{3/2})5d (3/2,5/2)° ₁
W VI	$\textbf{382.133} \pm \textbf{0.04}$	382.145 ^b	661 ^B	5d ² D _{3/2}	5f ² F ^o _{5/2}
(W^{5+})	394.072 ± 0.04	394.133 ^b	713 ^B	5d ² D _{5/2}	5f ² F ^o _{7/2}
W V (W ⁴⁺)	449.673 ± 0.05	449.649 ^b	549 ^в	5d ² ³ P ₁	5d(² D _{5/2})5f (5/2,5/2)° ₂

- ✓ generates an ADF04 files, compatible with ADAS
- \checkmark construct the population matrix
- ✓ solve the level population
- ✓ produce a synthetic spectra based on the emissivity of each line (n_j *A_{ji})

$$(4f^{14}5f)_{5/2} \rightarrow (4f^{14}5d)_{3/2}$$
 382.13Å
 $(4f^{14}5f)_{7/2} \rightarrow (4f^{14}5d)_{5/2}$ 394.07Å

Recent Progress on Tungsten Research at NWN

	Dr DING Xiaohir				
Energy level, Radiative transition data	a and Spectrum				
Ding, X., Liu, Y., et al. Phys. Lett. A, 2022, 454, 128500.	W ¹³⁺	M1, VIS			
Komatsu, A., Ding, X. et al. Plasma Fusion Res., 2012, 7, 1201158.	W^{8+-28+}	UV, VIS			
Minoshima, M., Ding, X. et al. Phys. Scr., 2013, T156, 014010.	W ²⁵⁺⁻²⁹⁺	VIS			
Ding, X., Liu, J., et al. Phys. Lett. A, 2016, 380, 874.	W^{26+}	VIS			
Kato, D., Ding, X., et al. Phys. Scr., 2013, T156, 014081.	W^{26+}	VIS			
Ding, X., Murakami, I., et al. Plasma Fusion Res., 2012, 7, 2403128.	W^{27+}	M1, VUV			
Ding, X., Xu, Y., et al. Phys. Lett. A, 2024, 493, 129266.	W ⁵³⁺	M1, VUV			
Ding, X., Yang, J., et al. Phys. Lett. A, 2018, 382, 2321.	W ⁵⁴⁺	M1, VUV			
Ding, X., Yang, J., et al. J. Quant. Spectrosc. Radiat. Transf., 2018, 204,7-11.	W ⁵⁴⁺	Soft X-ray			
Atomic Data					
Zhang, S., Ding, X., et al. Chin. Phys. B, 2024, 33, 033401.	W^{8+}	CI			
Ding, X., Dong, C., et al. J. Phys. B-At. Mol. Opt., 2012, 45, 035003.	W^{27+}	Ag-like			
Ding, X., Sun, R., et al. Atom. Data Nucl. Data, 2018, 119, 354.	W ⁵⁴⁺	Ca-like			
Ding, X., Sun, R., et al. J. Phys. B-At. Mol. Opt., 2017, 50, 045004.	W ⁵⁴⁺	E1,M1,E2,M2			
Ding, X., Sun, R., et al. Eur. Phys. J. D, 2017, 71, 73.	W ⁵⁴⁺	Electron Correlation			
Kwon, D., Ding, X., et al. Atom. Data Nucl. Data, 2018, 119, 250.	W ²⁺ -W ⁷²⁺	DR			
Collisional Radiative model (CRM)					
Ding, X., F. Zhang, et al. Phys Rev A, 2020, 101, 042509.	$W^{13+} - W^{15+}$	EBIT			
Ding, X.,Lei, L., et al. New J. Phys., 2024, 26(5): 053001.	W^{40+} - W^{42+}	EAST			

 $W^{43+} - W^{45+}$

Ding, X., Yang, P., et al. Phys. Lett. A, 2021, 420, 127758.

EAST

Collisional-radiative modeling of the 5p-5s spectrum of W¹³⁺-W¹⁵⁺ ions

- Energy level, radiative transition rate, and collision excitational cross section are calculated by considering the electron correlation, relativistic, QED effect.
- Reasonable collisional
 radiative model was
 constructed, which helps to
 identify the transitions of the
 ions and solves the
 conflicition on the assignment
 of the ionization.

Accurate calculation on the atomic data could aid the validation and explanation on the experiment.

Ding, X., et al. *Phys Rev A* , 2020, 101, 042509.

Collisional-radiative modeling for the EUV spectra from W⁴⁰⁺-W⁴⁵⁺ ions

Lei, L., et al. New J. Phys., 2024, 26(5): 053001

Running EBITs: Shanghai-EBIT

Dr. YAO Ke

D			•	1
Para.	A	ch	161	Jed
1				u

Electron energy	0.6 - 151 keV
Electron current	215 mA
Magnetic field	4.8 T
Electron density	10 ¹¹⁻¹² cm ⁻³
Vacuum	7.5×10 ⁻¹¹ Torr
Coolant	L-He (4.2 K)

Ions produced in SH-EBIT

Elements	Charge State
H、He、C、N、 O、F、Ne、S	1+Bare
Ar (18)	1+Bare
Fe (26)	1+Bare
Ni (28)	1+Bare
Kr (36)	1+Bare
Mo (42)	1+40+
<u>Xe</u> (54)	1+Bare
Ba (56)	1+54+
W (74)	1+72+
Au (79)	1+77+
U (92)	1+ 84+

Running EBITs: three low energy EBITs

- ✓ High Temperature superconducting magnet: B= 0.1~0.25T
- ✓ <u>Ee</u>=0.03~3.0 <u>keV</u>
- ✓ Ie=10 mA

Lowest energy 30 eV

- ✓ Permanent magnet:
- B=0.56 T
- ✓ <u>Ee</u>=0.1-3.0 <u>keV</u>
- \checkmark Ie=10 mA

✓ Permanent magnet:
 B= 0.65 T

- ✓ <u>Ee</u>=0.1~15 keV
- ✓ Ie=10 mA (upgrading, BaO cathode)

Magnet inside vacuum

External magnet Observation angle 42

Visible spectra to hard X-ray

W spectra observation in full wavelength range

HpGe (1-200 keV)

Crystal (30-1 Å)

Visible to UV (10000-300 Å)

EUV-I. (300-20 Å)

EUV-II. (300-20 Å)

Recent activities on tungsten: W^{q+} spectra in Fudan University

- High resolution tungsten spectra measured at EBIT.
- High accuracy atomic structure calculations: Relativistic Configuration Interaction (RCI) Multi-Configuration Dirac-Hartree-Fock (MCDHF) Relativistic Many-Body Perturbation Theory (RMBPT)

JQSRT,**262**(2021); PRA,**103**(2011), JQSRT,**279**(2022), JPB,**55**(2022), PRA,105(2022), Can. J. Phys., **102** (2024), Plasma Phys. Control. Fusion **66** (2024), JQSRT,325(2024)

Recent activities on tungsten spectra in Fudan University

8000

7000

5000

4000

6000

Electron beam energy (eV)

W⁶⁵⁺ - W⁷²⁺

6.000

4.000

1.000

Tu, et al., PoP, 23(2016) Tu, et al., PRA, 96(2017) Niu, et al., Phys. Plasmas 30 (2023)

- \checkmark K, L-shell excitation DR resonance strength
- Electron impact ionization cross-sections \checkmark

Metastable state ionization $W^{4+} \rightarrow W^{7+}$

- Tungsten spectra were observed at the electron collision energy below the ionization potential of the corresponding tungsten ions.
- It is caused by metastable state ionization, in which bound electrons are excited during e-W collision. Once electrons are populated at metastable states, they can stay there for long time, e.g., a few ms.
- The excited ions could be ionized in the subsequential collisions. The two steps process, collisional-excitation and ionization, significantly reduced the ionization potential.

Q. Lu et. al, PRA, 99 (2019) C.L. Yan et. al, PRA, 105 (2022)

Outline

- Tungsten and High-Z impurity source in EAST
- Impurity-related spectroscopic diagnostics in EAST
- Tungsten data needs and other important issues
- Relevant Activities
- Summary

Summary

- Tungsten behavior, transport study and its effective control is essential for the steady-state operation of Magnetic Confinement Fusion device.
- EAST has been operated with full W divertor, W guard limiter and Mo first wall since 2022 campaign.
- Sets of impurity-related spectroscopic diagnostics have been newly developed on EAST and became the powerful platform to study the impact of tungsten and other high-Z impurity behavior on plasma performance.
- Application of tungsten atomic data to quantitative analysis on tungsten spectra is still very limited compared to observation due to lack of reliable effective data. The main reason is the complexity and time-consuming of the modelling work.
- It is very nice that IAEA is planning a Coordinated Research Project (CRP) on Tungsten Ions in Magnetic Confinement Fusion Plasmas.
- I would like to take this opportunity to work with international and domestic colleagues and make progress on this.

Thanks for your attention! ASIPP

Dr. ZHANG Ling (张凌) zhangling@ipp.ac.cn