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Outline

= Where do collisional-radiative models fit in a radiative-hydrodynamics code?
= What requirements are put on the models?

= Examples
— Hydrogen edge plasma w/ optical depth effects

— Li data set for pellet injection

— Sn data set for EUV generation

Note: My experience has been gained primarily with laser-produced plasmas
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Collisional-radiative (CR) models in radiative-
hydrodynamic codes

= At high densities (n, > 10%° cm™3)

— Plasma can be optically thick to continuum radiation

— Radiation is coupled strongly to free electrons angle-integrated
intensity

— Absorbed radiation is redistributed thermally

— Energy transferred between radiation and matter: J(avjv —nv)dv

l\

absorption emission
= At low densities (ni < 1018 cm'3) coefficient  coefficient
— Plasma can be optically thick to line radiation
— Radiation is coupled strongly to bound electrons
— Radiation is coupled indirectly to free electrons line
— Absorbed radiation is redistributed within line profiles profile
— Radiative excitation / de-excitation rates: Gl;;xj,;;,(f,ﬁ 2?’?) 7, :jqf]vdv
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The physical regime determines the use of CR models

= High density: averaged material information
— Radiative properties: broadband absorption and emission coefficients

— Equation of state: ionization balance, internal energy

= Low density: detailed material information
— Radiative properties: absorption and emission profiles

— Equation of state: populations

= Both regimes require “full” atomic models

— All significant transitions between coupled states induced by collisions w/
electrons and photons: excitation, ionization + autoionization

— Low temperature = collisions w/ ions and neutrals + molecules
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The use determines the content of atomic models

= High density:
— Extensive state space / configuration coverage
— Multiple excitations from valence shell (can extend to inner shells)
— Collisional broadening > detailed structure less important

— Autoionizing state coverage more important than autoionization / DR

= Low density:
— Most ionizations / excitations directly out of ground state
— Detailed structure + line profiles important for radiation transfer
— High-n excited states important for charge exchange

— Autoionizing states critical for dielectronic recombination (DR)

Non-LTE Code Comparison Workshops have been extremely valuable

in identifying requirements for atomic models
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Plasmas at the tokamak edge are optically thick to line
radiation on length scales <1 cm

= Absorption coefficient for thermally-broadened Lyman o:

e’ 1 03 ( n _1
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= Simulations show large effects from radiation fields

a=n

= PIP: Self-consistent treatment which includes
— partially-ionized plasma transport
— non-LTE atomic kinetics
— line radiation transport
— excited state transport
— magnetic effects on line profiles

H.A. Scott and M.L. Adams, “Incorporating Radiation Effects into Edge Plasma Transport Models

with Extended Atomic Data Tables”, EPS Conference on Plasma Physics, 2004
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Detached divertor simulations exhibit large radiation
effects

Specifications: L=2 m, N=10°m3, q,,=10 MW/m?, b=0.1

20 20

18 185 1.9 195 2 18 185 1.9 195 2
X [m] X [m]

Qualitative description of the detached  Quantitative details of the particle and
divertor region remains unchanged. power balance change dramatically.

LLNL-PRES-748293

. . 4\
Lawrence Livermore National Laboratory N A‘Sg-qi‘l 7
National Nuclear Security Administration



Optically-thick hydrogen lines affect divertor power

balance

-
“
L FlUX qin Qr qout
“

9 —> Q : >q_ CR +1.000 -0.805 +0.195
“
g NLTE +1.000 -0.555 +0.445
4
“

L CR : PIP w/ optically-thin collisional-radiative
qin : incident heat flux model (tabulated data)
Q, :radiative heat flux NLTE : PIP w/ collisional-radiative model with
full line transfer

4d,,:: particle heat flux on
target plate

Radiation effects increased the divertor target plate incident heat flux by a factor 2.3
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Atomic data in plasma transport codes

= Plasma transport models explicitly treat ion and (ground state) neutral
atoms

= Excited states are assumed to be in equilibrium on transport timescales:

_rg [ gl __ gl
nx_](xng_l_fxni > ]fx _fx (ne7]—;)
= Transport model uses effective ionization / recombination and energy
loss coefficients which account for excited state distributions, e.g.

ani +V'(7’li‘fl~):Bnn_Bﬂni > ann +V'(nnVn):_Bnn+})rni

ot ot

= Tabulated coefficients are evaluated with a collisional-radiative code in
the coronal (optically-thin) limit

In the coronal limit, coefficients depend only on n,and T,
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Atomic data is condensed into effective rates:
P- and H-rates

= P-rates are constructed from the atomic rate equations:

A A .
2(Nf )+V.[N’V’ ]:[ it A”‘ ](Nt] N : number density
o\ N, NV, Av Aa (N A : atomic rate matrix
gN =A N, +A N =0=>N _=-A(A N,)=B_N,
at t : transported state
gNt +V-(NV,)=A,N,+A N =(A,+A,B_ )N, =PN, X : excited state

= H-rates are constructed from the electron energy equation:

(3,7 v [—nVT+q} V. .V(nT)+ 3m. ( =3 N4,AE,
ot 2 b=t

Y N AAE, = (A,AE, +A, AE, B_) tEZHtNt

Jok#j 1,1'#t t

This generalized the approach of Stotler, Post and Reiter (1993)
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Radiation effects are incorporated through the P- and
H-rates

= Radiation introduces spatial Effective ionization (P ) and recombination (P ) rates
dependence into the atomic rates
through the radiation field

= Rates are parameterized by the
(approximate) optical depth of
Lyman o

P(n,,T,)— P(n,T,7),

ed e ert e

T:j 2101411” (s')ds’
= Tabulated values generated with

escape factors for midpoint of
uniform plasma of depth 271

Rate (5'1)

= Can be applied in arbitrary multi- o 2 4 6 8 10
dimensional geometry Temperature (eV) p= neP

Parameterized tables were tested in UEDGE
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Optical depth parameterization allows coverage
from coronal to LTE regimes

Effective ionization / recombination rates Effective energy loss rates
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Excited state populations follow from effective rates

= Determined from ground state and ion densities
N,=fron; + fo1Ng , N3=f30n; + f310,

n=2 excited state n=3 excited state
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Optical depth can change populations by orders of magnitude
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H data for edge plasma

Constructed from semi-classical formulas

Johnson-Hinnov collisional rates

Doppler + collisional + (approximate) Stark broadening

No fine structure

Comments
= Ly-a fine structure splitting negligible compared to broadening
= Stark line shapes did not affect energetics, but are important for diagnostics

= Zeeman splitting due to a large magnetic field might decrease T enough to matter
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Li data for killer pellets (for P. Parks of GA)

= Fine structure data calculated with FAC (Flexible Atomic Code)
= Single excitations to n=8, double excitations to n=5

= E1, M1, E2 radiative transitions
H-like: 64 levels, 1.1e3 transitions
He-like: 252 levels, 1.1e4 transitions
Li-like: 270 levels, 1.2e4 transitions

Comments:
= FAC and similar codes are quite accurate for low-Z elements (except neutrals?)

= Datasets remain reasonably compact and fast for low densities
— but -

= Including enough DR channels could be problematic
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Li evaluation @ n_ = 10"> cm™

Average ionization state Radiative power loss
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Sn data for EUV generation (from J. Colgan of LANL)

= Fine structure energy levels / oscillator strengths from LANL code

= Special attention paid to configuration interaction

= Dataset restricted to structure + oscillator strengths for 33-50 electrons

— Sufficient structure for low densities (except for DR channels)

Comments:

= High-fidelity calculations of complex ions
are difficult but possible

= Adding other transitions for NLTE work
increases expense greatly but might be
done with semiclassical methods

oscillator strength

frequency (eV)

J. Colgan, et al, HEDP 23 (2017) 133-137
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(LTE) Radiative emission of averaged models

= Combine levels by configuration and energy spread
= Averaged transitions between combined levels

= Aim to maintain oscillator strength distribution in each charge state

e Sn*0—sn*7 | Top
1ox108 | 1 T ooy _ Data from fine-structure model of J. Colgan
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Carefully averaged data maintains the spectral structure
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Testing averaged models with radiation transport

= NLTE atomic kinetics + radiation transport for 1 eV-averaged model
= T=30eV+ maximum N, =10 cm?3

= Density profile N. « r2 (fit from rad-hydro simulation)

escaping flux optical depth ionization
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Bandpass flux is insensitive to frequency resolution
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Questions / Suggestions

What are expected density / temperature ranges?

— will help set model parameters

Which molecular reactions can occur?

— use a complete set of transitions or a chemistry model?

Do non-thermal electrons play any role?

Comparisons of data + simulations are both helpful
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