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§  Where	do	collisional-radia1ve	models	fit	in	a	radia1ve-hydrodynamics	code?	
§  What	requirements	are	put	on	the	models?		
§  Examples	

—  Hydrogen	edge	plasma	w/	op1cal	depth	effects	
—  Li	data	set	for	pellet	injec1on	
—  Sn	data	set	for	EUV	genera1on	

Outline	

Note:	My	experience	has	been	gained	primarily	with	laser-produced	plasmas	
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§  At	high	densi1es	(ni	>	1020	cm-3)	
—  Plasma	can	be	op1cally	thick	to	con1nuum	radia1on	
—  Radia1on	is	coupled	strongly	to	free	electrons	
—  Absorbed	radia1on	is	redistributed	thermally	
—  Energy	transferred	between	radia1on	and	ma?er:	

§  At	low	densi1es	(ni	<	1018	cm-3)	
—  Plasma	can	be	op1cally	thick	to	line	radia1on	
—  Radia1on	is	coupled	strongly	to	bound	electrons	
—  Radia1on	is	coupled	indirectly	to	free	electrons	
—  Absorbed	radia1on	is	redistributed	within	line	profiles	
—  Radia1ve	excita1on	/	de-excita1on	rates:	
	

Collisional-radia0ve	(CR)	models	in	radia0ve-
hydrodynamic	codes	
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§  High	density:	averaged	material	informa1on	
—  Radia1ve	proper1es:	broadband	absorp1on	and	emission	coefficients	
—  Equa1on	of	state:	ioniza1on	balance,	internal	energy	

§  Low	density:	detailed	material	informa1on	
—  Radia1ve	proper1es:	absorp1on	and	emission	profiles	
—  Equa1on	of	state:	popula1ons	

§  Both	regimes	require	“full”	atomic	models	
—  All	significant	transi1ons	between	coupled	states	induced	by	collisions	w/	

electrons	and	photons:		excita1on,	ioniza1on	+	autoioniza1on	
—  Low	temperature		à			collisions	w/	ions	and	neutrals	+	molecules	

The	physical	regime	determines	the	use	of	CR	models	
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§  High	density:	
—  Extensive	state	space	/	configura1on	coverage	
—  Mul1ple	excita1ons	from	valence	shell		(can	extend	to	inner	shells)	
—  Collisional	broadening	à	detailed	structure	less	important	
—  Autoionizing	state	coverage	more	important	than	autoioniza1on	/	DR	

§  Low	density:	
—  Most	ioniza1ons	/	excita1ons	directly	out	of	ground	state	
—  Detailed	structure	+	line	profiles	important	for	radia1on	transfer	
—  High-n	excited	states	important	for	charge	exchange	
—  Autoionizing	states	cri1cal	for	dielectronic	recombina1on	(DR)	

The	use	determines	the	content	of	atomic	models	

Non-LTE	Code	Comparison	Workshops	have	been	extremely	valuable	
	in	iden1fying	requirements	for	atomic	models	
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Plasmas	at	the	tokamak	edge	are	op0cally	thick	to	line	
radia0on	on	length	scales	<	1	cm	

§  Absorp1on	coefficient	for	thermally-broadened	Lyman	α:	

§  Simula1ons	show	large	effects	from	radia1on	fields	
§  PIP:	Self-consistent	treatment	which	includes	

—  par1ally-ionized	plasma	transport	
—  non-LTE	atomic	kine1cs	
—  line	radia1on	transport	
—  excited	state	transport	
—  magne1c	effects	on	line	profiles	
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H.A.	Sco?	and	M.L.	Adams,	“Incorpora1ng	Radia1on	Effects	into	Edge	Plasma	Transport	Models	
with	Extended	Atomic	Data	Tables”,	EPS	Conference	on	Plasma	Physics,	2004 
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Detached	divertor	simula0ons	exhibit	large	radia0on	
effects	

Specifica1ons:		L=2	m,	N=1020	m-3,	qin=10	MW/m2,	b=0.1	

Qualita1ve	descrip1on	of	the	detached	
divertor	region	remains	unchanged.	

Quan1ta1ve	details	of	the	par1cle	and	
power	balance	change	drama1cally.	
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Op0cally-thick	hydrogen	lines	affect	divertor	power	
balance	

Flux	 qin	 Qr	 qout	

CR	 +1.000	 -0.805	 +0.195	

NLTE	 +1.000	 -0.555	 +0.445	

CR	:	PIP	w/	op1cally-thin	collisional-radia1ve	
	model	(tabulated	data)	

NLTE	:	PIP	w/	collisional-radia1ve	model	with	
	full	line	transfer	

qin		:	incident	heat	flux	

Qr			:	radia1ve	heat	flux	

qout	:	par1cle	heat	flux	on	
	target	plate	

Radia1on	effects	increased	the	divertor	target	plate	incident	heat	flux	by	a	factor	2.3	
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Atomic	data	in	plasma	transport	codes		

§  Plasma	transport	models	explicitly	treat	ion	and	(ground	state)	neutral	
atoms	

§  Excited	states	are	assumed	to	be	in	equilibrium	on	transport	1mescales:	

§  Transport	model	uses	effec1ve	ioniza1on	/	recombina1on	and	energy	
loss	coefficients	which	account	for	excited	state	distribu1ons,	e.g.	

§  Tabulated	coefficients	are	evaluated	with	a	collisional-radia1ve	code	in	
the	coronal	(op1cally-thin)	limit	
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In	the	coronal	limit,	coefficients	depend	only	on	ne	and	Te	
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Atomic	data	is	condensed	into	effec0ve	rates:	
					P-	and	H-rates	

§  P-rates	are	constructed	from	the	atomic	rate	equa1ons:	

§  H-rates	are	constructed	from	the	electron	energy	equa1on:	
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t : transported	state 
x : excited	state	

N :	number	density 
A : atomic	rate	matrix	
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This	generalized	the	approach	of	Stotler,	Post	and	Reiter	(1993)	



LLNL-PRES-748293 
11	

§  Radia1on	introduces	spa1al	
dependence	into	the	atomic	rates	
through	the	radia1on	field	

§  Rates	are	parameterized	by	the	
(approximate)	op1cal	depth	of	
Lyman	α:	

§  Tabulated	values	generated	with	
escape	factors	for	midpoint	of	
uniform	plasma	of	depth	2τ

§  Can	be	applied	in	arbitrary	mul1-
dimensional	geometry	

Radia0on	effects	are	incorporated	through	the	P-	and	
H-rates	
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Parameterized	tables	were	tested	in	UEDGE	
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Op0cal	depth	parameteriza0on	allows	coverage	
from	coronal	to	LTE	regimes	

Coronal regime LTE regime ( )r,i r,i r,i' 13.6eVeH n H P= − ± ×
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Excited	state	popula0ons	follow	from	effec0ve	rates	

§  Determined	from	ground	state	and	ion	densi1es	
		n2=f20ni	+	f21ng	,	n3=f30ni	+	f31ng	

Op1cal	depth	can	change	popula1ons	by	orders	of	magnitude	
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§  Constructed	from	semi-classical	formulas	
§  Johnson-Hinnov	collisional	rates	
§  Doppler	+	collisional	+	(approximate)	Stark	broadening	
§  No	fine	structure	

Comments	
§  Ly-α	fine	structure	spliqng	negligible	compared	to	broadening	
§  Stark	line	shapes	did	not	affect	energe1cs,	but	are	important	for	diagnos1cs	

§  Zeeman	spliqng	due	to	a	large	magne1c	field	might	decrease	τ	enough	to	ma?er	

H	data	for	edge	plasma	
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§  Fine	structure	data	calculated	with	FAC	(Flexible	Atomic	Code)	
§  Single	excita1ons	to	n=8,	double	excita1ons	to	n=5	
§  E1,	M1,	E2	radia1ve	transi1ons	

	H-like:	 			64	levels,		1.1e3	transi1ons	
	He-like: 	252	levels,		1.1e4	transi1ons	
	Li-like: 	270	levels,		1.2e4	transi1ons	

Comments:	
§  FAC	and	similar	codes	are	quite	accurate	for	low-Z	elements	(except	neutrals?)	
§  Datasets	remain	reasonably	compact	and	fast	for	low	densi1es	

	–	but	–	
§  Including	enough	DR	channels	could	be	problema1c	

Li	data	for	killer	pellets	(for	P.	Parks	of	GA)	
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Li	evalua0on	@	ne	=	1015	cm-3	
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§  Fine	structure	energy	levels	/	oscillator	strengths	from	LANL	code	
§  Special	a?en1on	paid	to	configura1on	interac1on	
§  Dataset	restricted	to	structure	+	oscillator	strengths	for	33-50	electrons	

—  Sufficient	structure	for	low	densi1es	(except	for	DR	channels)	

Comments:	
§  High-fidelity	calcula1ons	of	complex	ions	
are	difficult	but	possible	

§  Adding	other	transi1ons	for	NLTE	work	
increases	expense	greatly	but	might	be	
done	with	semiclassical	methods	

Sn	data	for	EUV	genera0on	(from	J.	Colgan	of	LANL)	
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§  Combine	levels	by	configura1on	and	energy	spread	
§  Averaged	transi1ons	between	combined	levels	
§  Aim	to	maintain	oscillator	strength	distribu1on	in	each	charge	state	

(LTE) Radiative emission of averaged models	

Carefully	averaged	data	maintains	the	spectral	structure	
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§  NLTE	atomic	kine1cs	+	radia1on	transport	for	1	eV-averaged	model	
§  T	=	30	eV	+	maximum	Ni	=	1018	cm-3		
§  Density	profile	Ni ∝ r-2	(fit	from	rad-hydro	simula1on)	

Testing averaged models with radiation transport	

Bandpass	flux	is	insensi1ve	to	frequency	resolu1on	

2

1

0

op
tic

al
 d

ep
th

180160140120100
wavelength (Å)

optical depth ionization 
6

5

4

3

2

1

0

flu
x 

(e
rg

/c
m

2 /s
/Å

)

180160140120100
wavelength (Å)

escaping flux 

high	resolu1on	

low	resolu1on	

13

12

11

ch
ar

ge
 s

ta
te

0.050.040.030.020.01
position (cm)



LLNL-PRES-748293 
20	

§  What	are	expected	density	/	temperature	ranges?	
—  will	help	set	model	parameters	

§  Which	molecular	reac1ons	can	occur?	
—  use	a	complete	set	of	transi1ons	or	a	chemistry	model?	

§  Do	non-thermal	electrons	play	any	role?	

§  Comparisons	of	data	+	simula1ons	are	both	helpful	

Ques0ons	/	Sugges0ons	




