Liquid metal vapour shielding in linear plasma devices

T.W. Morgan¹, G.G. van Eden¹, P. Rindt², V. Kvon¹, D. U. B. Aussems¹, M.A. van den Berg¹, K. Bystrov¹, N.J. Lopes Cardozo² and M. C. M. van de Sanden¹

¹Dutch Institute for Fundamental Energy Research- DIFFER, Eindhoven, The Netherlands

²Eindhoven University of Technology, The Netherlands

Going from ITER to DEMO involves large jumps in several parameters

Courtesy G. Matthews

- Timescales/fluence much larger
- Neutron loading much higher
- Narrow path to avoid excessive exhaust power

Property	ITER	DEMO	
Pulse length	~400 s	~7200 s	
Duty cycle	<2%	60-70%	
Neutron load	0.05 dpa/yr	I-9 dpa/yr	
Exhaust power	150 MW	500 MW	
Divertor area	~4 m ²	~6 m ²	
Radiated power	80%	97%	

Limiting factors for W in DEMO

Capillary porous structures (CPSs) create conduction based stabilized PFCs

Evtikhin 1999

- Replace solid surface with liquid
- MHD forces (jxB) destabilize liquids in tokamaks (droplets)
- Use surface tension/capillary refilling
- Replace top region with this combined material

Benefits of liquid metals for DEMO

Self replenishment Higher heat fluxes (see later) No cracking

Lowered stresses substrate

ELMs possible(?)

Already molten

Vapour protection

Only influences substrate

Separation of PSI from neutron issue

Material options of Li, Sn both have strengths and weaknesses

Choices once cost, availability, activation etc. taken into account

	Lithium	Tin/Ga	
•••	Low Z	Higher Z	•••
••	High vapour pressure	Lower vapour pressure	•••
•••	High T retention	Lower T retention	•••

Magnum-PSI/Pilot-PSI utility for LM study due to DEMO relevant heat/particle loading

Linear devices have good flexibility and diagnostic access for basic physics and test module studies

Linear devices have good flexibility and diagnostic access for basic and test module studies

Vapour shielding: additional loss channels for heat flux (impurity stimulated "detachment")

Solid metal: $q_{plasma} = q_{cond}$ Liquid metal: $q_{plasma} = q_{cond} + q_{evap} + q_{rad} + q_{mass}$

Experiment compared performance of Sn CPS with solid Mo reference targets

lon species	T _e	n _e	Qref
	(eV)	(10 ²⁰ m ⁻³)	(MW m ⁻²)
H or He	0.4-3.1	0.6-7.0	0.47-22

n.b. Deliberately poorly cooled to reach VS temperature regime

Vapour interaction with plasma decouples input power from surface temperature

Poorly cooled Sn samples exposed to power load series in pilot-PSI

van Eden PRL 2016

Temperature locking when vapour pressure and plasma pressure ~ matches

Overall reduction in power to cooling water of ~one third

Strong recombination occurs due to lowered T_e

Oscillatory self-regulatory behaviour is observed: dynamical equilibrium

Shielding behaviour is oscillatory in nature

Emission and surface temp. correlated:

18.00

18.00

a)

b)

phase III

Oscillations in floating target potential indication of T_e variations

Oscillation in continuum emission – a sign of n_e variation

$$\epsilon_{\rm cont} \propto \sum_{i} \frac{n_{\rm i} n_{\rm e}}{\sqrt{T_{\rm e}}} = \frac{n_{\rm e}}{\sqrt{T_{\rm e}}} (n_{\rm He^+} + n_{\rm Sn^+}) = \frac{n_{\rm e}^2}{\sqrt{T_{\rm e}}} \left[{\rm Wm^{-3} sr^{-1} nm^{-1}} \right]$$

- Continuum emission increasing throughout cycle. n_e increases by factor 4
- Increased mean free path of Sn neutrals thus explained by reduced collision rate due to lower T_e
- Plasma pressure still ~conserved. ($\propto n_e T_e$)

Cyclical equilibrium leads to dynamic locking of temperature at pressure balance point

- Detachment timescale: $\tau_{ie} = \tau_{ei} = \tau_{e} m_{He}$ /2m_e **≈ 0.2 µ**s (at 0.8 eV and n_e = 10²⁰ m⁻³)
- Vapour extinction timescale: $\tau_v = d_{ax}/\sqrt{(2 \ kB \ T_{surf})/m} \approx 16 \ \mu s$
- Cooling timescale: $T_{surf} = (T_0 T_{cool})$ $e^{-t/\tau_c} \rightarrow \tau_c \approx 250 \ \mu s$
- Oscillation freq. (~10 Hz) set by thermal equilibrium timescale

Increased (visual) emission near Li CPS target compared to solid reference

Applied conditions: 150 A, 14 slm He, $0.8 T \rightarrow 11.4 MW m^{-2}$

Mo reference:

Li CPS

Technological challenge- performance on long timescales via surface replenishment

Component similar to and designed to test design for NSTX-U Rindt FED 2016

Similar vapour shielding effect observed for Li as for Sn

- High heat load can be sustained (8 MW m⁻² peak heat load)
- Sn vapour limit is ~1700 ° C (P_{vap} ~3 P_{plasma})
- Prediction for Li is therefore \sim 700-900 ° C
- Prediction well matched by observation
- Similar oscillatory behaviour as for Sn

Analytical description of VS mechanism

Lithium energy dissipation through ionization and radiation

Calculated from collisional radiative modeling in: Goldston et al., Nuclear Materials and Energy, 2017.

A temperature plateau occurs when dissipation via Li becomes dominant.

deposited power

FEM shows good agreement with experiment

Benefit for DEMO of vapour shielding

- **Decouples** incoming heat load from surface temperature and reduces cooling requirements
- Maximum **impurity influx ~fixed**
- For Sn adds **protection** for off-normal events: adds **robustness** and is more **forgiving**
- For Li **constant operation** could be possible

Requirements for atomic physics modelling of VS

- cross sections for electron impact ionization and excitation for Sn (~0 - 5+)
- Improved low charge state modelling?
- cross sections for CX between Sn⁰ or Li⁰ and H+ or He+
- cross sections for momentum exchange
 between neutrals and ions (e.g. Sn⁰ and H+)
- Lz curves for Sn

EXTRA SLIDES

Conclusions

- **PFC** design for **DEMO** unresolved issue
- LM-based PFC is a promising solution
 - Can tolerate same/higher heat load than W-only PFC
 - Possible to operate at high power handling while staying below core impurity limits
 - VS and replenishment means more robust and forgiving against off-normal events
- Physics rich and can be counter-intuitive
 - VS, enhanced redeposition, radiative interactions...
- Further engineering and physics required to reach maturity

The heat exhaust challenge

Power handling limit set by tolerable impurity concentration in core

Experiments carried out in Magnum-PSI to study re-deposition rate directly

Mass loss rate goes down as a function of flux

Re-deposition rate strongly increases with flux, approaches 99.9%

Mechanisms for strong redeposition

- Ionization rates negligible at these temperatures (<2 eV)
- Ion-neutral friction (and potentially CX) dominant with λ_{mfp} of a few mm (high $n_e > 10^{20} \text{ m}^{-3}$)
- Particles promptly entrained in magnetized plasma and redirected to surface
- Such high density/flux plasma expected in DEMO divertor at strikepoints

Influences maximum evaporation rate and therefore upper limit of temperature window

*Interaction of Li and D increases surface binding energy and can increase operational temperature further (Abrams NF 2015)

What is the power handling capability of liquid metals?

I. Overall temperature window

2. Power handling limits

3.Vapour shielding
Sn
Li

Finite element modelling can give estimate for power handling capability LMs

¹Morgan NME (2017) ²Li-Puma FED (2013)

- Studies in Pilot-PSI demonstrated how to treat CPS as mixed material thermally¹
- Modify existing DEMO designs² and use 3D FE modelling to determine max power load
- Determined from temperature limits of each component

Material	Limit	T _{max}
W	Recrystallization	1250 °C
Sn	Evaporation (90% Redeposition)	1000 °C
Cu/CuCrZr	Softening	300 °C
EUROFER	Softening	700 °C

Different designs modelled to scope possibilities and limitations

Results show comparable/improved performance with additional advantages possible

- No interlayer
- Low stresses

handling

What is the power handling capability of liquid metals?

I. Overall temperature window

2. Power handling limits

3. Vapour shielding
Sn
Li