

Low energy ionization, charge transfer and reactive collisions

for ion source and edge plasma chemistry

X. Urbain

Experimentalists' Network Meeting IAEA November 2018

Merged Ion Beams

Low temperature & high resolution Diatomic systems Triatomic systems

Crossed Electron-Ion Beams Animated beam method Excited atoms Molecular ions

Ion Beam Gas Target Measurements Deceleration Vibrational diagnostics

MERGED BEAMS SET-UP

Simultaneous AI measurement: absolute overlap calibration

For a review on merged beams: Phaneuf *et al.* (1999) *Reports on Progress in Physics*, 62, 1143

X. Urbain Experimentalists' Network Meeting IAEA November 2018 - 3 -

MERGED BEAM SET-UP : low collision energy, high resolution Δx $\overrightarrow{v_{CM}}$ $KER = \frac{E}{4L^2} \left[\Delta x^2 + v_{CM}^2 \Delta t^2 \right]$ 0° magne $L = 320 \pm 4(2) \text{ cm}$ $s^2 3d^2 D$ ls²3p ²P s²3s ²S 150 100 1.5 % FWHM 50 $Li^+ + D^-$ 0.6 0.8 1.2 1.4 10 KER (eV)

X. Urbain Experimentalists' Network Meeting IAEA November 2018 - 3 -

(AN)ISOTROPY : The collision axis flips by π when moving across zero detuning

ENERGY RESOLUTION: Iongitudinal and transverse temperature // e⁻-ion collisions

$$f(v_d, \vec{v}) = \frac{m}{2\pi k T_{\perp}} \sqrt{\frac{m}{2\pi k T_{||}}} \exp\left[-\frac{m v_{\perp}^2}{2\pi k T_{\perp}} - \frac{m (v_{||} - v_d)^2}{2\pi k T_{||}}\right], \ v_{||} \simeq |v| (1 \pm \Delta E/2E), \ v_{\perp} \simeq |v| \sin \theta$$

12 keV C+ and C - beams, 5 eV dispersion, 1 mrad angular spread: $T_{||} \simeq 8 \, K \,, ~~T_{\perp} \simeq 70 \, K$

X. Urbain Experimentalists' Network Meeting IAEA November 2018 - 4 -

Low energy anion-cation reactions

 $\begin{array}{ll} A^{+}+B^{-} \rightarrow A^{*}+B & \mbox{Mutual Neutralization (MN)} \\ & \rightarrow A+B^{+}+e & \mbox{Transfer Ionization (TI)} \\ & \rightarrow A^{-}+B^{+} & \mbox{Charge Exchange} \\ & \rightarrow AB^{+}+e & \mbox{Associative Ionization (AI)} \end{array}$

e.g. H₂⁺ + O⁻ Le Padellec *et al.*, J. Chem. Phys. **124**, 154304 2006

 $A^+ + B^- \rightarrow A^* + B + Kinetic Energy Release$

X. Urbain Experimentalists' Network Meeting IAEA November 2018 - 6 -

X. Urbain Experimentalists' Network Meeting IAEA November 2018 - 7 -

KER (eV)

Theory: Larson et al. (2016) Phys. Rev. A 94, 022709

kinetic energy release \rightarrow state identification

KER SPECTRUM: Partial cross sections

R (a₀)

relative peak area \rightarrow branching ratio

e.g. He⁺ + H⁻ \rightarrow He (1snl ^{1,3}L) + H

UCLouvain

X. Urbain Experimentalists' Network Meeting IAEA November 2018 - 8 -

Negative lons in Earth's ionosphere: UV tropical nightglow of O I (135 nm)

$$O^{+} + O^{-} \rightarrow O({}^{5}P) + O$$

R. E. Olson, J. R. Peterson, and J. Moseley (1970) *Geophys. Res.*, 76, 2516, 197

E. Sagawa *et al.* (2005) *J. Geophys. Res.*, 110, A11302

J. Qin et al. (2015) *J. Geophys. Res. Space Physics*, 120, 10116

R.

Internuclear distance

- Total transfer probability (Landau-Zener) $\sim 2P(1-P)$ $P \sim 1 - \exp\left\{-\frac{2\pi H_{12}^2}{v_c a}\right\}$
- H_{12} matrix element evaluated using Landau-Herring asymptotic method Chibisov and Janev (1988) Phys. Rep. 166, 1
- \rightarrow transition probability window that mostly depends on covalent state potential energy

Multistate Curve Crossing Model: electron 'hops' from B to A+

A

 Θ'

b

X. Urbain Experimentalists' Network Meeting IAEA November 2018 - 12 -

NEGATIVE ION SOURCES: destruction of H⁻ by MN with parent cation

$$\begin{split} H_{2} + e^{-} &\rightarrow H_{2}(B,C) + e^{-} \rightarrow H_{2}(v) + \text{photon} \\ H_{2}(v) + e^{-} &\rightarrow H + H^{-} & \text{dissociative electron attachment (DEA)} \\ H_{2}^{+} + H^{-} &\rightarrow H_{2}^{(*)} + H^{(*)} & \text{mutual neutralization (MN)} \text{merged beams} \\ H^{+} + H^{-} &\rightarrow H + H^{*} \end{split}$$

DETACHED PLASMA: Molecular assisted recombination

 $\begin{array}{ll} H_{2}\left(v\right)+H^{+}\rightarrow H_{2}^{+}(v)+H & \mbox{charge transfer} & \mbox{decelerated beam} \\ & \mbox{Urbain et al.(2013) Phys. Rev. Letters 111, 203201 (H_{2}(v=0))} \\ & \mbox{H}_{2}^{+}(v)+e^{-}\rightarrow H+H^{*} & \mbox{dissociative recombination} & \mbox{storage ring} \end{array}$

Amitay et al. (1998) Science 281, 75 & (1999) Phys. Rev. A 60, 3769 (HD⁺)

 $H_2^{+} + H^{-}$

Calculations: Landau-Herring asymptotic method

C. L. Liu, J. G. Wang, and R. K. Janev (2006) *J. Phys. B: At. Mol. Opt. Phys.* 39, 1223 Atom-like description: electron capture to Rydberg state of H_2 – diagonal FCF

UCLouvain

 $H_2^{+} + H^{-}$

Calculations under assumption: $H_2^+ + H^- \rightarrow H_2 + H(n)$

M. J. J. Eerden, M. C. M. van de Sanden, D. K. Ortobaev & D. .C. Schram (1995) *Phys. Rev. A* **51**, 3362

Predicted propensity towards n=5

No evidence for direct atomic excitation in our data

X. Urbain Experimentalists' Network Meeting IAEA November 2018 - 18 -

Merged Ion Beams

Low temperature & high resolution Diatomic systems Triatomic systems

Crossed Electron-Ion Beams

Animated beam method Excited atoms Molecular ions

Ion Beam Gas Target Measurements Deceleration Vibrational diagnostics

Electron impact ionization of excited helium atoms

How to get a pure He(1s2s ³S) beam?

X. Urbain Experimentalists' Network Meeting IAEA November 2018 - 20 -

New beam line on crossed ion-electron beam setup

J. Lecointre, D. S. Belic, H. Cherkani-Hassani, J. J. Jureta, and P. Defrance (2006) J. Phys. B 39, 3275

X. Urbain *Experimentalists' Network Meeting* IAEA November 2018 – 21 –

 $He(1s2s {}^{3}S) + e^{-} \rightarrow He^{+} + 2 e^{-}$

M. Génévriez, J. J. Jureta, P. Defrance, and X. Urbain (2017) Phys. Rev. A 96, 010701(R)

X. Urbain Experimentalists' Network Meeting IAEA November 2018 - 22 -

Dissociative excitation and ionization of molecular helium ions by electron impact Helium operation

> symmetric collisions: rapid thermalization He* + He++/He/He* \rightarrow He+ + He++/He/He*

molecular ions (divertor region): well-known in technical plasmas He^{*} + He^{*} \rightarrow He₂⁺ + e⁻ He + He + He⁺ \rightarrow He₂⁺ + He

 \rightarrow molecular ions appear in denser, colder regions

X. Urbain Experimentalists' Network Meeting IAEA November 2018 - 23 -

Merged Ion Beams Low temperature & high resolution Diatomic systems

Triatomic systems

Crossed Electron-Ion Beams Animated beam method Excited atoms Molecular ions

Ion Beam Gas Target Measurements

Deceleration Vibrational diagnostics

Vibrationally resolved charge transfer between slow ions and molecules

Urbain et al. (2013) Phys. Rev. Letters 111, 203201

X. Urbain Experimentalists' Network Meeting IAEA November 2018 - 26 -

SUMMARY Merged Ion Beams

- Full resolution of initial and final states through 3D imaging
- Preliminary results of state-resolved differential cross sections
- total cross sections measurements affected by excessive background

Crossed Electron-Ion Beams

- Animated beam method perfectly suited for absolute measurements
- Excited atoms from photodetachment (O(¹D) in preparation)
- Molecular ions with known vibrational excitation needed

Ion Beam Gas Target Measurements

- Deceleration 10 eV and above (guided beams under study)
- Vibrational diagnostics: works for a few diatomics (H₂,O₂, HeH) more general if Rydberg target, as tested with CO and N₂

X. Urbain A. Dochain, T. Launoy, J. Loreau, A. Schils

N. Vaeck T. Launoy, J. Loreau Université Libre de Bruxelles

H. Cederquist, H. T. Schmidt, R. D. Thomas, Å. Larson N. de Ruette, M. Kaminska, M. H. Stockett, R. Nascimento

P. Barklem

UPPSALA UNIVERSITET

B. Pons

L. Méndez, L. F. Errea, Rabadán L. Fernández Menchero

Fonds de la Recherche Scientifique - FNRS, BE

Federal Public Service Economy, SMEs, Self-employed and Energy, BE

EUROFUSION Consortium, EU (WP Education)

X. Urbain Experimentalists' Network Meeting IAEA November 2018 - 26 -

