Technical Meeting on Uncertainty Assessment and Benchmark Experiments for Atomic and Molecular Data for Fusion Applications, 19-21 December 2016, Vienna, Austria

Application of atomic data to quantitative analysis of tungsten spectra on EAST tokamak

L. Zhang^{1*}, S. Morita^{2,3}, X. D. Yang¹, Z. Xu¹, P. F. Zhang¹, J. Huang¹, T. Ohishi^{2,3}, W. Gao¹, Y. J. Chen¹, X. J. Liu¹, Z. W. Wu¹, J. L. Chen¹, L. Q. Hu¹ and EAST team¹

¹ Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230026, China
 ² National Institute for Fusion Science, Toki 509-5292, Gifu, Japan
 ³ Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu, Japan

*E-mail: <u>zhangling@ipp.ac.cn</u>

19 Dec. 2016

Outline

Background of W spectroscopy in EAST

- Upgrade of PFCs on EAST
- W spectroscopy in EAST

W spectra measurement

- Hardware development (EUV spectrometers)
- Line analysis of W spectra at low/high $\rm T_e$
- Space-resolved measurement of W spectra at high $\rm T_e$

• Quantitative analysis of W spectra

- In-situ absolute intensity calibration
- Methods for evaluation of W concentration
- Required atomic data
- W concentration in steady-state H-mode discharge

Summary & Future work

Outline

Background of W spectroscopy in EAST

- Upgrade of PFCs on EAST
- W spectroscopy in EAST
- W spectra measurement
 - Hardware development (EUV spectrometers)
 - Line analysis of W spectra at low/high $\rm T_e$
 - Space-resolved measurement of W spectra at high $\rm T_e$
- Quantitative analysis of W spectra
 - In-situ absolute intensity calibration
 - Methods for evaluation of W concentration
 - Required atomic data
 - W concentration in steady-state H-mode discharge
- Summary & Future work

Upgrade of Plasma Facing Components on EAST

FW: TZM (Titanium-Zirconium-Molybdenum) alloy Upper divertor: ITER-like W/Cu monoblock

Li coating, Si coating, B coating

Gas puffing for diagnostics; Ar, He

Intrinsic & extrinsic impurities;

He, Li, B, C, N, O, Si, Ar, Cr, Fe, Ni, Cu, Mo, W...

W spectroscopy in EAST

• ITER has adopted tungsten as the divertor material for the D-T operation.

 Impurity transport of tungsten in long pulse discharges is a crucial issue for both the EAST and ITER.

W spectroscopy

	ITER (T _{e0} ~15-20keV)	EAST (T _{e0} ~4keV)
Visible	Divertor (e.g. W ⁰⁺ -W ²⁺) Sputtering at div. plates	Divertor (e.g. W ⁰⁺ -W ²⁺) Sputtering at div. plates
VUV	SOL (e.g. W ³⁺ -W ⁶⁺) Influx at SOL	SOL (e.g. W ³⁺ -W ⁶⁺) Influx at SOL
EUV	Edge (e.g. W ¹⁹⁺ -W ⁴⁵⁺) Influx at edge; W density	Edge (e.g. W ⁷⁺ -W ¹³⁺) Influx at edge
EUV & X-ray	Core (e.g. W ⁶⁵⁺ -W ⁷¹⁺) W density	Core (e.g. W ¹⁹⁺ -W ⁴⁵⁺) W density

Outline

- Background of W spectroscopy in EAST
 - Upgrade of PFCs on EAST
 - W spectroscopy in EAST

• W spectra measurement

- Hardware development (EUV spectrometers)
- Line analysis of W spectra at low/high $\rm T_e$
- Space-resolved measurement of W spectra at high $\rm T_e$
- Quantitative analysis of W spectra
 - In-situ absolute intensity calibration
 - Methods for evaluation of W concentration
 - Required atomic data
 - W concentration in steady-state H-mode discharge
- Summary & Future work

Hardware development: EUV spectrometers (1) (Grazing incidence flat-field spectrometers)

- Two EUV spectrometers at longer wavelength range (20-500Å); EUV_Long: spectral measurement with fast response EUV_Long2: space-resolved measurement
 - Slit width: 30µm/100µm (EUV_Long/EUV_Long2 with spatial resolution slit)
 - Varied line spacing groove concave holographic grating: 1200g/mm
 - Back-illuminated CCD (size: 26.6x6.6mm², number of pixels: 1024x255)
 - EUV_Long: 1024 (horizontal) spectral measurement, 255 (vertical) full binning
 - EUV_Long2: 255 (horizontal) spectral measurement, 1024 (vertical) space-resolved measurement
- One EUV spectrometer at shorter wavelength range (10-130Å) EUV_Short: spectral measurement with fast response
- Slit width: 30µm
 Varied line spacing groove concave holographic grating: 2400g/mm
 Back-illuminated CCD (size: 26.6x6.6mm², number of pixels:1024x255)
 1024 (horizontal) spectral measurement
 255 (vertical) full binning
 Pulse motor for wavelength scan
 Laser light for optical alignment
 Turbo-molecular pump for vacuum system

Hardware development: EUV spectrometers (2) (Grazing incidence flat-field spectrometers)

Wavelength	Field of view		Resolution		
Wavelengui	Vertical	Toroidal	Time	Space	Spectrum
EUV_Long 20-500Å	30cm	5cm	5ms	-	0.22@200Å
EUV_Short 10-130Å	50cm	4cm	5ms	-	0.1@20Å
EUV_Long2 20-500Å	50cm	7cm	~50ms	2-3cm	0.22@200Å

Line analysis of W spectra at low T_e

- W spectra can not be generally observed in L-mode plasmas at low heating power.
 The following W spectra are recorded after sudden drop of tungsten dust from upper divertor.
- $T_e(0)=1.0$ keV, $n_e=3.5$ x10¹⁹m⁻³: USN, L-mode, $P_{LHCD}=0.5$ MW, $B_t=2.25$ T, $I_p=500$ kA, downward ∇B

- Tungsten UTA (unresolved transition array) at 15-70Å is observed by EUV_Short with high spectral resolution.
- UTA at 15-35Å can be compared with CoBIT data.

- 2nd order tungsten lines at 90-120Å can be easily identified from UTA with high spectral resolution.
- Quantitative analysis of UTA is difficult.

Line analysis of W spectra at higher T_e

- W spectra are always observed with strong intensity in USN H-mode discharges. Additional 4.6GHz LHW and ECRH heating increase the T_e higher than 2.5keV. Then, highly ionized W ions of W⁴⁰⁺ to W⁴⁵⁺ can be easily measured with strong intensity. The following W spectra are recorded during ELM-free H-mode phase.
- $T_e(0)=2.6$ keV, $n_e=3.7$ x10¹⁹m⁻³: USN, $P_{LHW}/P_{ICRH}/P_{ECRH}=2.1/1.4/0.4$ MW, $B_t=2.25$ T, $I_p=450$ kA, downward $\nabla B_{LHW}/P_{ICRH}/P_{ICRH}/P_{ICRH}$

Space-resolved measurement of W spectra at high T_e

- The position of peak intensity for different transition from the W ion with the same ionization stage is a little different, e.g. for W⁴³⁺, W⁴⁵⁺
- The profiles will be used to check the PEC data
- With absolute intensity calibration and Abel inversion, the tungsten density profile could be calculated

ASIPP

Outline

- Background of W spectroscopy in EAST
 - Upgrade of PFCs on EAST
 - W spectroscopy in EAST
- W spectra measurement
 - Hardware development (EUV spectrometers)
 - Line analysis of W spectra at low/high $\rm T_e$
 - Space-resolved measurement of W spectra at high T_e

• Quantitative analysis of W spectra

- In-situ absolute intensity calibration
- Methods for evaluation of W concentration
- Required atomic data
- W concentration in steady-state H-mode discharge
- Summary & Future work

In-situ absolute intensity calibration for EUV_Long

- Absolute intensity calibration of the EUV spectrometer is • necessary for the quantitative analysis of line emissions and bremsstrahlung continuum.
- Absolute intensity calibration at 20-150Å: comparison of bremsstrahlung continua in EUV and visible ranges.
- Relative intensity calibration at 130-300Å: line pairs of 2p-2s/3p-3s transitions of Li and Na-like ions from EAST.

EUV spectra have to be checked before the calibration whether the metallic impurity is negligible or not because of its large recombination rate.

There is a wavelength gap between Cr XXII and Ar XVI.

Candidate line pairs in EAST plasma:

Ion	Ei	λ	Transition	Intensity ratio		Sensitivity
	(eV)	[Ă]		Modeled*	Measured	ratio
Fe XXIV	2046	192.03	$1s^22s\ ^2S_{1/2}$ - $1s^22p\ ^2P_{3/2}$	1.91	4.38±0.11	0.436
		255.11	1s ² 2s ² S _{1/2} -1s ² 2p ² P _{1/2}			
	1776	127.87	2p ⁶ 3s ² S _{1/2} -2p ⁶ 3p ² P _{3/2}	1.82	5.02±0.13	0.363
Mo XXXII	1776	176.65	$2p^63s\ ^2S_{1/2}$ - $2p^63p\ ^2P_{1/2}$			
Cr XXII	$II 1722 \frac{223.02}{279.74} \frac{1s^2 2s^2}{1s^2 2s^2}$	$1s^22s\ ^2S_{1/2}$ - $1s^22p\ ^2P_{3/2}$	1.93	2 20+0 11	0.569	
CI AAII		279.74	$1s^22s\ ^2S_{1/2}$ - $1s^22p\ ^2P_{1/2}$	1.95	5.57±0.11	0.507
Ar VVI	019	353.85	$1s^22s\ ^2S_{1/2}$ - $1s^22p\ ^2P_{3/2}$	1.07	2 21+0.07	0.801
AI AVI	918	389.07	$1s^22s\ ^2S_{1/2}$ - $1s^22p\ ^2P_{1/2}$	1.97	2.21±0.07	0.691
Fe XVI	489	335.41	2p ⁶ 3s ² S _{1/2} -2p ⁶ 3p ² P _{3/2}	1.05	1.66±0.10	1.175
		360.76	2p ⁶ 3s ² S _{1/2} -2p ⁶ 3p ² P _{1/2}	1.95		
* Ref. "K D Lawson et al 2009 JINST 4 P04013"						

13/22

Method for evaluation of W concentration (1): using chord-integrated tungsten line intensity

- W concentration, $c_W = N_W/N_e$ or $c_W = n_W/n_e$
- Evaluation of c_W from chord-integrated line intensity, e.g. I^{W44+}-I^{W45+}

$$I^{W^{q^{+}}} = \int n_{W^{q^{+}}}(l) \operatorname{PEC}^{W^{q^{+}}}(l) n_{e}(l) dl$$

= $\int c_{W}(l) n_{e}(l) FA^{W^{q^{+}}}(l) \cdot \operatorname{PEC}^{W^{q^{+}}}(l) n_{e}(l) dl$
= $\int c_{W} f_{c_{W}}(l) n_{e}(l) FA^{W^{q^{+}}}(l) \cdot \operatorname{PEC}^{W^{q^{+}}}(l) n_{e}(l) dl$
 $c_{W} = I^{W^{q^{+}}} / \int f_{c_{W}}(l) FA^{W^{q^{+}}}(l) \operatorname{PEC}^{W^{q^{+}}}(l) n_{e}^{2}(l) dl$

I^{Wq+}: measured chord-integrated line intensity from W^{q+} n_{Wq+} : density of W^{q+} PEC^{Wq+}: photon emissivity coefficient of line from W^{q+} n_e : electron density c_W (r): density profile of W, $c_W(r) = c_W \cdot f_{c_W}(r)$ f_{C_W} : normalized density profile of W

FA^{Wq+} : fractional abundance of W^{q+} under ionization equilibrium

Method for evaluation of W concentration (2): using radiation power loss

- The c_w is analyzed for a target shot.
- Calibration shot with similar T_e profile to the target shot is required; a sudden increase in the radiation power loss caused by c_w increase.
- Radiation power loss is measured by bolometer system.

- Cooling rate (Radiation power coefficient): $L_W(T_e, n_e) = \sum_q L_W^{q+}(T_e, n_e) N_{W^{q+}} / N_W$
- Radiation power loss by W: $P_W = \int L_W(T_e, n_e) n_e(r) n_W(r) dV$
- For calibration shot: $L_W^{Cali} = \Delta P_{rad}^{Cali} / (\Delta I_{W-UTA}^{Cali} / n_e)$
- For target shot:

$$P_{W} = L_{W}^{Cali} \cdot (I_{W-UTA}/n_{e}) = \int L_{W}(T_{e}, n_{e})n_{e}(r) n_{W}(r) dV$$

= $\int L_{W}(T_{e}, n_{e})n_{e}^{2}(r) c_{W}f_{c_{W}}(r) dV$
 $c_{W} = L_{W}^{Cali} \cdot (I_{W-UTA}/n_{e}) / \int L_{W}(T_{e}, n_{e})n_{e}^{2}(r) f_{c_{W}}(r) dV$

 $c_W(r)$: density profile of W, $c_W(r) = c_W \cdot f_{c_W}(r)$ $f_{C_W}(r)$: normalized density profile of W I_{W-UTA} : chord-integrated intensity of W-UTA at 45-70Å

Method for evaluation of W concentration (3): using space-resolved tungsten line intensity

- Density profile of W ions n_{wq+}(r), e.g. for W⁴²⁺-W⁴⁵⁺, can be obtained from the space-resolved measurement of impurity line intensity.
- Chord-integrated line intensity, e.g. I^{W42+}-I^{W45+}

$$I^{W^{q^+}} = \int \varepsilon_{W^{q^+}} dl = \int n_{W^{q^+}}(l) \operatorname{PEC}^{W^{q^+}}(l) n_e(l) dl$$

• Multi-channel I^{Wq+} (e.g. 64 channels for EUV_Long2)

EFIT
Abel Inversion
$$\epsilon_{wq+}(r)$$

 $T_e(r), n_e(r), PEC(T_e, n_e)$
 $n_{wq+}(r)$

$$\begin{split} I^{Wq+} &: measured chord-integrated line intensity from W^{q+} \\ \epsilon_{wq+} &: emissivity of line from W^{q+} \\ n_{Wq+} &: density of W^{q+} \\ PEC^{Wq+} &: photon emissivity coefficient of line from W^{q+} \end{split}$$

Atomic data (1): PEC (photon emissivity coef.) of W lines

ASIPP

- ADAS-IC: with J-resolved fine structure energy levels (arf40_ic series)
- ADAS-LS: with J-unresolved LS levels (arf40_ls series)

Atomic data (2): Fractional Abundance of W^{q+} ions

- Data from open-ADAS are used in the set of rate equations.
- Effective ionization coefficient (scd50_w.dat)
- Effective recombination coefficient (acd50_w.dat)
- Effect of impurity transport should be considered.

ASIPP

Atomic data (3): Tungsten cooling rate

W concentration in steady-state ELMy H-mode

Method		n _w (0)/n _e (0)	N _W /N _e
PEC	W ⁴²⁺ 129.41Å	1.1x10 ⁻³	3.9x10 ⁻⁴
	W ⁴³⁺ 61.334Å	4.5x10 ⁻⁵	1.6x10 ⁻⁵
	W ⁴³⁺ 126.29Å	6.3x10 ⁻⁵	2.3x10 ⁻⁵
	W ⁴⁴⁺ 60.93Å	1.6x10 ⁻⁵	5.6x10 ⁻⁶
	W ⁴⁵⁺ 62.336Å	1.9x10 ⁻⁵	6.7x10 ⁻⁶
	W ⁴⁵⁺ 126.998Å	2.4x10 ⁻⁵	8.8x10 ⁻⁶
Cooling rate	AIM	4.3x10 ⁻⁵	1.5x10⁻⁵
	Pütterich	5.3x10 ⁻⁵	1.9x10 ⁻⁵
	ADAS	9.1x10 ⁻⁵	3.2x10 ⁻⁵

- The evaluated Cw from W⁴²⁺ is one order of magnitude higher than that from other lines
- The evaluated Cw is in the range of 5x10⁻⁶-3x10⁻⁵

Summary & Future work

Summary

- Tungsten spectra have been measured in EAST discharges using newly installed EUV spectrometers. Line analysis of tungsten spectra has been done.
- Two Methods for evaluation of tungsten concentration based on the cooling rate of tungsten ions and the PEC of W⁴²⁺ W⁴⁵⁺ ions are introduced with the required atomic data.
- The Cw in steady-state H-mode discharge with RF heating is evaluated to be in a range of 5x10⁻⁶ - 3x10⁻⁵ with different methods, while the evaluated Cw from W⁴²⁺ is one order of magnitude larger than that from other lines.
- Vertical profiles of chord-integrated tungsten line intensity have been measured in steadystate H-mode discharges. Further analysis is being now progressed.

Future work

- To measure and identify the emission lines of W ions in longer wavelength range.
- To make closer collaboration on the tungsten study with atomic physicists.
- To study the tungsten transport with combination of quantitative measurement and simulation.

THANK YOU FOR YOUR ATTENTION