Technical Meeting on

Uncertainty Assessment and Benchmark Experiments for Atomic and Molecular Data for Fusion Applications

19-21 December 2016, IAEA, Vienna

KLL DIELECTRONIC RECOMBINATION RESONANT STRENGTHS OF TUNGSTEN IONS IN SH-EBIT

Y. YANG ON BEHALF OF THE SH-EBIT GROUP

Shanghai EBIT Laboratory 💮 🥥 Institute of Modern Physics, Fudan University, Shanghai, China

SHORT PREFACE

- <u>D</u>ielectronic <u>R</u>ecombination of highly charged ions contributes significantly to radiation energy loss in fusion plasmas.
- While Tungsten, which will be the strongest candidate of divertor material in ITER, is an high Z elements and will become highly charged ion in the core plasma.

DR resonance strengths of all charge state Tungsten ions are crucial data for the modeling and diagnostic of fusion plasma.

EXPERIMENTAL METHODS

- DR process is one kind of inelastic collision and there are generally two common methods to collide electron and ion beam to measure the strength.
 - Crossed-beam
 - Merged beam
- There is another unique way that could be applied to the measurements of DR resonance strength.
 - To trap the ions and guide an electron beam passing through – an Electron Beam Ion Trap

PRINCIPLE OF EBIT

- Operation of EBIT
- Atomic processes in the trap of an EBIT

SOME ADVANTAGE OF EBIT MEASUREMENT

• EBIT has an advantage on relatively high energy investigation

Para.	Value	
Electron energy	1~180 keV	
Electron current	20~210 mA	
Electron Density	10 ^{9~13} cm ⁻³	
e- Beam density	>2500 A/cm ²	
e- Beam radius	~35 µm	
Maximum Magnetic field, B	4.8 T	
Uniformity of B	2.77 ‱	
Vacuum	~7.5 × 10 ⁻¹¹ Torr	
collimation	<0.05 mm	

LOW-ENERGY EBIT

Parameter		Va	alue	
Energy range		60-50	000 eV	
Maximum beam current		10.2	2 mA	
Beam width		93-1	$03 \ \mu m$	狭緯成像
Center magnetic field		0.4	48 T	
E-gun	LN ₂ Tank	Parameters		Achieved
		Electron energy		30-4000 eV
	Collector	Beam current		10 m A
	Drift Tubes			
		Beam radius	,	~65 µm
	Coils	Vacuum	,	~1.0×10 ⁻⁹ torr
	Electron gun	LN ₂ consumption		0.6 ~1.5 L/h
		Magnetic field		0~0.25 T

DATA ANALYSIS FOR TUNGSTEN MEASUREMENTS

W(CO)6

B. Tu, et. Al, Phys. Plasmas 23, 053301 (2016)

DATA ANALYSIS FOR TUNGSTEN MEASUREMENTS CON'T

DATA SHEETS

 \mathbf{S}_{idf} , D(E)_(etector), f_{a} , and the beam energy width w are the free parameters

All others, including r Fano factor Q, autoi of n=2 RR, and angu RCI method in FAC.

Label

He₁

He₂

He₃

He₅ He₆ Lia

He₇

He₈ Lis

He₉

Li He₄

Li₄

Li₆

Li₇

Li₈

Lio

ΓABLE Expt. B.	IX. Tv	vo sets of	fitted cl	narge stat	e distrib	ution f_q	in Expt.	A and
	He	Li	Be	В	С	Ν	0	F
Expt. A Expt. B	6.5%	21.0% <1%	30.2% 3.5%	24.8% 9.7%	13.0% 17.2%	4.5% 23.0%	26.7%	19%

dth of middle state Fd, ferential cross sections 90, are calculated by

IMPROVEMENTS BY USING FANO PROFILES

KLL RESONANCE SCALING AS THE ATOMIC NUMBER Z

$$S = \frac{1}{m_1 Z^2 + m_2 Z^{-2}},$$

Ions	m_1	<i>m</i> ₂
B-like	2.77(0.07)	16.6(1.6)
C-like	5.53(0.4)	38.5(9.2)

UNCERTAINTIES

- Uncertainties of the resonance strengths are less than 11%.
 - the statistic uncertainties and peaks mixing from weak resonances of each charge state 3–8%
 - RR cross-section calculation, which is considered to have an uncertainty of about 3%
 - the change of charge state distribution in a single sweep cycle

$$\frac{\Delta N_q}{N_q} = -\langle j_e \rangle S \frac{dt}{dE},\tag{6}$$

where $\langle j_e \rangle$ is the effective electron beam flux density, and dE/dt is the scanning rate. Using the total resonance strength, $\Delta N_q/N_q$ is estimated to be less than 1% for each charge state, except for Be-like of 1.3% in Expt. B.

THANK YOU FOR YOUR ATTENTION

AND MERRY CHRISTMAS!!