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Introduction

Classical Focus of Particle-wall interaction in fusion:  
● Sputter yield Y(E,angle,species) and reflection: well studied for pure samples & 

atomic projectiles
● Collision cascade in binary collision approximation:  O(10 12⁻  sec)
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Introduction

Particle-wall interaction: 
● Wall is part of complex PMI interplay
● Time scales O(10-12 sec) – O(10+3 sec)
● Similar for spatial scales O(nm) – O(m)

Large number of coupled processes (→ this meeting). 
● Here: hydrogen transport in material

by D. Whyte, FPAM (2010)
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I. Hydrogen transport in materials

Tritium retention and transport in material crucial 
● Key parameters: Diffusion, Solubility, Permeation
● Example: Situation for H in tungsten

l
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I. Hydrogen transport in materials

Tritium retention and transport in material crucial 
● Key parameters: Diffusion, Solubility, Permeation
● Example: Situation for H in tungsten
● Recommended value: 0.39 eV (Frauenfelder) [Causey, PhysScr T94,9 (2001)]

Data from 1969, recent DFT-calculations: 0.25 eV
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I. Hydrogen transport in materials

Tritium retention and transport in material crucial 
● Key parameters: Diffusion, Solubility, Permeation
● Example: Situation for H in tungsten
● Discrepancy by factor of 60 between data from 1969 and 2001
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I. Hydrogen transport in materials

Tritium retention and transport in material crucial 
● Key parameters: Diffusion, Solubility, Permeation
● Limited database for fusion relevant materials (W, Be)
● No reliable uncertainty quantification even for fundamental properties
● Why? 

Many reasons, eg. research focus in 70s different (hydrogen storage)

● Dedicated experiments with extended temperature range needed
● In principle straightforward, but

● High sensitivity needed

● Measurements influenced by defects (trapping)

● ...

● In addition: 
● Responsibility?
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II. Hydrogen retention in materials

Tritium retention and transport 
● Key parameters: trapping energies, trap density, trap distribution
● Experiment: Thermal desorption spectroscopy

● Results are inconclusive: typically broad peaks – in literature 15 (!) different val. 
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II. Hydrogen retention in materials

Tritium retention and transport 
● Effect of depth profile commonly neglected :-( 
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II. Hydrogen retention in materials

Tritium retention and transport 
● Depth profile itself based on ill-conditioned inversion problem 

but old cross-sections were systematically shifted :-(

       (NIM B 371 (2016) 41)
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II. Hydrogen retention in materials

Tritium retention and transport 
● Trap energies are key component for retention and permeation modelling
● Present status not satisfying
● TDS evaluation challenging (ill-conditioned deconvolution problem)
● Atomistic parameters (ie. frequency-factor) typically set to fixed value (??) 

Round-robin experiments indicated

● Stronger modelling support needed (T>0 K)
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III. Molecular Dynamic Potentials

Molecular dynamic simulations 
● Simulation results depend on potential
● Standard approach: Fitting of parametric function to ab-initio/DFT/exp. data
● Parameter space high-dimensional: quality check – challenging 
● MD-potentials at core of multiscale approaches 

Automated closed-loop 
potential development 
necessary

Approach based on 
Bayesian Gaussian 
processes
appears feasible

Adapted from B. Wirth, 
JNM 329 (2010), p. 103
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Conclusion

Plasma.Material-Interaction:

 - many basic data even for key materials are lacking or uncertain

 - steel (i.e. EUROFER) as 'new' PWI material: next level of 
  complexity of PMI – huge parameter space

 - benchmarking and validation will be crucial (expect the unexpected) 

 Strong need for joint experimental & modelling campaigns

 Who is/ wants to be/ needs to be  in charge?

 

     

Next level of complexity: 

 strong surface morphology development

5 µm

GLADIS test: H. Greuner, 
H. Maier, M. Balden
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IV. Status and Outlook

Thank you
for your
attention
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I. The atomistic level

Basis of all subsequent PMI effects: atomic collisions

- Collision events/cascades by impinging particles:

● Displacements

● Defect formation

● Erosion due to physical sputtering

- Modelling tools:

 
● Binary collision (BC) models (e.g. TRIM)

● Molecular dynamic simulations

  MD alleviates restrictions of BC codes:

● Low energy (< ~50 eV)  

● Molecules
K. Tichmann, U. von Toussaint, W. Jacob, JNM 420 (2012), p. 291
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I. The atomistic level

Damage by energetic particles

- Number of displaced atoms: 
● NRT-model: N

D
=0.8 T

d
(E) / (2E

Th
) ~ E

– E
th
=? (for tungsten: 40 eV, 90 eV,...) 

– Linear dependence correct?

- MD simulations: E
th
 of tungsten: strong anisotropy 

         E
th
 (eV)

R.E. Stoller (2012)

U. von Toussaint (2012)
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