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Accurate Atomic Physics Data 

Essential for Tokamak Modeling 

 Tokamak modeling critical for fusion 
energy because can’t build a “small” 
reactor, 
• All represent extrapolation of knowledge, 

• Only approach is via 1st principles model. 

• Such models rely on atomic physics data. 

• Atomic data also needed for model 
validation,  

• E.g., in experimental diagnostics. 

 Will show some examples: 
• Gas Puff Imaging:  

• Turbulence diagnostic, 

• Excellent opportunity for neutral transport 
validation. 

• High-Z impurity transport in tokamak 
plasmas, 

• Three examples. 

• “Closest to 1st principles” codes are kinetic, 
• Need more detailed data. 
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Gas Puff Imaging Allows Us to “See” & 

Characterize Edge Plasma Turbulence 

Camera 

view:  

∼24 x 24 cm 
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http://w3.pppl.gov/~szweben/ 

[Zweben et al., PPCF (2016)] 

http://w3.pppl.gov/~szweben/
http://w3.pppl.gov/~szweben/
http://w3.pppl.gov/~szweben/


GPI Provides Nearly Ideal Opportunity for 

Validating Neutral Transport Codes 

 And atomic physics data! 
• ⇒ Identify sensitivities & minimize uncertainties. 

 Is “ideal” because: 
• Source & plasma well characterized, 

• Plasma-material interaction effects minimal, 

• Results can be directly compared with experiment. 

 But, not completely: 
• Complex geometry, 

• Light emission nonlinear function ⇒ ⟨S(n)⟩ ≠ S(⟨n⟩).  
• Turbulence complicates ne, Te measurement. 

 NSTX D2 validation: 
• Observed: 1/89 Da photons / atom ± 34%, 

• Simulated: 1/75 ± 18%. 

 Doesn’t include atomic physics uncertainty! 
• Subsequent update to n = 1 → 3, 4, 5 ⇒ ∼10% 

change in emission. 
• How uncertain are these data? 

• D2 dissociation contributes ∼30% of Da at peak & is 
more uncertain. 
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Simulated He GPI Emission in Alcator C-

Mod Way Too Large! 

 D2 comparison similar to 
NSTX. 

 Two He CR models: 
• M. Goto, JQSRT 76, 331 

(2003), 

• S. Loch et al., PPCF 51, 
105006 (2009). 

 How accurate are these data? 

 Alternative explanations 
dismissed: 
• Boundary conditions, 

• 4.1 T singlet-triplet mixing 
(Goto). 

 Still to check: 
• Radiation trapping, 

• Turbulence effects. 

[S. Baek et al., APS-DPP (2016)] 
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Core Penetration Fraction Sensitive to  

W Ionization Rate  

 Predictive OEDGE simulations of 
DIII-D W ring experiments.  

 For “shelf” geometry: 
• ADAS50: 0.3% W reach core, 

• ADPAK: 16%! 

• Factor of 5 difference in ionization 
rate ⇒ factor of 50 difference in 
core penetration. 

• Similar results for “floor” geometry. 

 Sensitivity enters via prompt 
redeposition model. 

 Actual experiments will have WI 
data ⇒ can quantify source, 
• & core bolometry will give data on 

core concentration. 

• ⇒ may be able to reduce 
uncertainties. 
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[J. D. Elder et al., PSI (2016)] 



Optimization of Fusion Operating Scenarios 

Benefits from Accurate L(T
e
) 

 Optimize ni & Ti profiles to maximize 

pressure (→ Pfus) & high Jboot (↓ 

recirculating power), 

• High-Z content must be controlled to do this. 

 C-Mod experiments targeted at validation 

those control mechanisms:  

• Neoclassical transport, 

• Radio-frequency heating effects. 

 Assess W transport via sawteeth! 

• How much peaking due to nW? 

• How much to Te? 

• Peaking ↔︎ gradients ⇒ need dL/dTe! 

[Reinke et al., IAEA FEC (2016),  

Loarte et al., PoP (2015)] 
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CX Recombination Affects Ionization 

Balance & Diagnostic Interpretation 

 Assume n0/ne profiles & 
calculate Mo32+ distributions: 
• Net effect of CX recombination 

equivalent to Dr ~ 0.1 a! 

 Impacts transport model based 
on Mo32+ diagnostic,  
• E.g., ignoring CX would require 

pinch to match observed Mo32+. 

 Relevant for diagnostic analysis, 
e.g., C-Mod XICS [Reinke, RSI 
(2012)]. 

 More important in devices with 
NBI! 

 But, CX recombination data 
hard to find for W, Ca, …  
• Can rough estimates be made 

without much effort? 
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Kinetic Codes Will Need More 

Detailed Data 

 6-D codes track velocities of 
all reactants & products. 

 E.g., [Tskhakaya CPP 
(2016): 
• H+ + e radiative 

recombination from 
photoionization, 

• 3-body recombination from 
ionization. 

 Large scale gyrokinetic / drift 
kinetic codes are 5-D. 
• Focus is on ion distribution. 

• & electrons in atomic 
processes treated 
heuristically. 

• But, want correct electron 
energetics.  
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Bootstrap current calculation with XGCa 

[Hager PoP (2016)] 



Conclusions 

 From Gas Puff Imaging: 
• D collisional radiative model in good shape, 

• Molecular contributions more uncertain. 

• Are there problems with He model? 

 High- Z Impurity Transport: 
• W first ionization critical, 

• Knowing dL/dTe accurately would be useful, 

• Data for CX recombination of closed shell ions 
needed for diagnostic interpretation. 

 1st principles kinetic codes need velocity 
data for all reactants & products. 
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