

Resonant electron-molecular cation collisions in the edge plasmas of fusion devices: new state-to-state cross sections and rate coefficients

ORATOIRE

J. Zs. Mezei^{1,2,3,4}, F. Colboc¹, S. Niyonzima⁵, V. Laporta⁶, M. D. Epée Epée⁷, D. A. Little⁸, N. Pop⁹, K. Chakrabarti¹⁰, O. Motapon⁷, D. Benredjem³, A. Bultel¹¹, K. Hassouni², R. Celiberto⁶, J. Tennyson⁸ and I. F. Schneider^{1,3} E-mail: ioan.schneider@univ-lehavre.fr ¹Laboratoire Ondes et Milieux Complexes, CNRS, Université du Havre, France ²Laboratoire des Sciences des Procédés et des Matériaux, CNRS, Univ. Paris 13, France ³Laboratoire Aimé Cotton, CNRS, ENS Cachan and Univ. Paris-Sud, Orsay, France ⁴Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen, Hungary ⁵Département de Physique, Université du Burundi, Bujumbura, Burundi ⁶Istituto de Nanotecnologia, CNR, Bari, Italy ⁷Department of Physics, Faculty of Sciences, University of Douala, Cameroon ⁸Department of Physics and Astronomy, University College London, United Kingdom ⁹Department of Physical Foundation of Engineering, Politehnica University Timisoara, Romania ¹⁰Department of Mathematics, Scottish Church College, Calcutta, India ¹¹Complexe de Recherche Interprofessionnel en Aérothermochimie, CNRS, Université de Rouen, France

UNIVERSITÉ **PARI**

INTRODUCTION

For the chemical modeling of edge fusion plasmas, extensive cross

The Multichannel Quantum Defect Theory (MQDT) [1] has been employed in computing cross sections and Maxwell rate coefficients for electron-driven reactions involving molecular cations. These data are appropriate for the modeling of the kinetics of various cold ionized media of fundamental interest, including the plasma-wall interaction [2].

Data on the following processes - among others – are needed [3]:

Dissociative Recombination (DR):

 $AB^++e^- \rightarrow AB^*, AB^{**} \rightarrow A+B,$

Vibrational/Rotational Excitation (VE/RE), de-Excitation (VdE/RdE): $AB^+(N^+,v^+)+e^- \rightarrow AB^*, AB^{**} \rightarrow AB^+(N^{+*},v^{+*})+e^-$

Dissociative Excitation (DE):

 $AB^++e^- \rightarrow AB^{**} \rightarrow A^+B^++e^-$

RESULTS

Extensive cross sections and rate coefficients have been produced for the benchmark cation HD⁺ [4-6]. The role of the DE for the hydrogen isotopomers, and that of the core-excited Rydberg states, have been clearly put in evidence by an appropriate account of the mixing of the various reaction channels, open and closed. The calculated ro-vibrationally resolved state-to-state cross sections

sections and rate coefficients have been produced for **BeH**⁺ ([10] – Figure 3 and 4). The role of the DE has been clearly put in evidence by an appropriate account of the mixing of the various reaction channels, open and closed [10]. The calculations have been performed for all the vibrational levels ($v_i^+=0,...,17$) of the target molecular ion.

Figure 3. Maxwell rate coefficients for the DR, VE and VdE of BeH⁺ ion in its electronic ground state and on its initial vibrational states v_i⁺ [10]. The numbers label the final vibrational state of the transition.

Figure 6. N₂⁺ DR effective cross sections compared with those measured using CRYRING [12] and single-pass merged beams devices [13].

The core-excited effects have been included successfully in the study of the DR of N_2^+ [11] – Figure 6 – occurring in the plasma torch aiming to assist the detritiation process of the Tokamak. Rate coefficients and branching ratios have been produced in satisfactory agreement with experiments [12,13]. The study performed on CH^+ – Figure 7 – reveals the importance of the excited cores and higher order theoretical treatment in order to achieve a realistic model.

and/or rate coefficients have been averaged and compared with storage ring experimental results – Figure 1.

Figure 1. Rotationally-averaged Maxwell anisotropic rate coefficients for the dissociative recombination of HD⁺, compared with TSR storage-ring measurements [4].

In order to provide collisional data for the modeling of the fusion edge plasmas and the primordial gas of the early Universe [7], extensive cross sections and rate coefficients have been produced for H_2^+ [8,9], some more recent results being illustrated in Figure 2.

ion.

Figure 4. DR, VE, VdE and DE cross sections of the BeH⁺ ion in its electronic ground state and on its initial vibrational states v_i⁺ for collision energies ranging from 2 to 10 eV.

In order to complete the collisional data for the modeling of edge plasmas for fusion devices we have started on a comprehensive study on the **BeD⁺** and **BeT⁺** isotopomers. The first preliminary results on the DR, VE and VdE global rate coefficients illustrated in **Figure 5**, show the isotopic effect.

Figure 7.: DR cross sections for CH⁺ including two excited cores, compared with TSR storage ring measurements [14] and previous calculations [15].

REFERENCES

- [1] Ch. Jungen, Handbook of High Resolution Spectroscopy, Wiley & Sons, New York, (2011) 471.
- [2] R. Celiberto, R.K. Janev, D. Reiter, Plasma Phys. Control. Fusion 54 (2012) 035012.
- [3] I. F. Schneider, O. Dulieu, J. Robert, Proceedings of DR2013: The 9th International Conference on Dissociative Recombination:

Figure 5. Global Maxwell rate coefficients for the DR, VE and VdE of BeH⁺ ion and its isotopomers in their electronic ground states and on its lowest initial vibrational states v_i^+ .

Theory, Experiment and Applications, Paris, July 7-12, 2013, EPJ Web of Conferences 84 (2015).

[4] O. Motapon et al, Phys Rev. A 90 (2014) 012706. [5] A. Wolf et al, EPJ Web of Conferences 84 (2015) 01001. [6] K. Chakrabarti et al, Phys. Rev. A 87 (2013) 022702. [7] C. M. Coppola et al, Astrophys. J. Suppl. Ser. 193 (2011) 7. [8] O. Motapon et al, Phys. Rev. A77 (2008) 052711. [9] M. D. Epée Epée et al, MNRAS 455 (2016) 276.

[10] S. Niyonzima et al, ADNDT (2016), http://dx.doi.org/10.1016/j.adt. 2016.09.002

[11] D. A. Little et al, Phys. Rev. A 90 (2014) 052705. [12] J. R. Peterson *et al*, J. Chem. Phys. 108 (1998) 1978. [13] C. H. Sheehan and J.-P. St.-Maurice, J. Geophys. Res.: Space Phys. 109 (2004) A03302.

[14] Z. Amitay et al, Phys. Rev. A 54 (1996) 4032. [15] L. Carata et al, Phys. Rev. A 62 (2000) 052711.

/.⁺=3

ACKNOWLEDGEMENTS

We warmly acknowledge Région Haute-Normandie, the LabEx EMC³, FR-FCM-ITER and USPC-ENUMPP.