IAEA Technical Meeting on Uncertainty Assessment and Benchmark Experiments for Atomic and Molecular Data for Fusion Applications 19–21 December 2016, IAEA Headquarters, Vienna, Austria Meeting room: M02 Atomic and Molecular Data Needs for Fusion Applications 9:40– 20 min.

Contribution of Quantitative Spectroscopy to Fusion Plasma Research

National Institutes for Quantum and Radiological Science and Technology (QST)

T. Nakano

Role of Impurities in fusion plasmas

W: useless in divertor and harmful in core

- ⇒ Only demerit. Particularly W core density needs to be suppressed
- <u>C</u>: useful in divertor and not harmful in core
- \Rightarrow Significant merit as a radiator in divertor plasmas

Various W atomic data needed for W density / radiation measurement

Plasma rotation and central heating effective in avoiding W accumulation

T. Nakano and the JT-60 team, J. Nucl. Mater. S327 (2011) 415.

Plasma rotation and central heating effective in avoiding W accumulation

T. Nakano and the JT-60 team, J. Nucl. Mater. S327 (2011) 415.

T Nakano et al JNM **415 (2010) S327

W^{q+} Collisional-Radiatve model

Calculated ioniz./recomb. rate agrees with measured W⁴⁵⁺/W^{44+*}

FAC and ADAS agree with JT-60U experimental data within 30%

⇒ Accuracy of S⁴⁴⁺ to a⁴⁵⁺ evaluated **M.F.Gu, Can. J. Phys. **86** (2008) 675 *T Nakano et al J. Nucl. Mater **415** (2011) S327 ***http://open.adas.ac.uk⁹

W⁴⁴⁺ ioniz. & W⁴⁵⁺ recomb. rates should be evaluated around 4 keV.

Large uncertainty may be acceptable at low and high T_e . Efforts on data evaluation should depend on importance of the data

W: useless in divertor and harmful in core

- ⇒ Only demerit. Particularly W core density needs to be suppressed
- <u>C</u>: useful in divertor and not harmful in core
- \Rightarrow Significant merit as a radiator in divertor plasmas

JT-60U tokamak

- Plasma current:
 - < 2.5 MA
- Toroidal Magnetic field: < 4.1 T
- Discharge duration:
 < 65 s
- Heating
 (Neutral Beam) < 25 MW
 (Waves) < 8 MW

During high radiation: Peak at X point

C IV(C³⁺): n < 5 : Ionizing component n \ge 5 : Recombining component

Volume recombination of C⁴⁺ is observed for the first time

C III (C²⁺): Ionization component dominates

18

Ionization/recombination flows and radiative power

- ✓ C^{3+} is the biggest radiator.
- $\checkmark~C^{3+}$ is produced by ionization of C^{2+} and recombination of C^{4+} .
- \Rightarrow Recombination converts inefficient radiator, C⁴⁺ into efficient radiator, C³⁺. Recombination of Ne⁸⁺ was observed in Ne seeded plasmas.

Which line of C IV contributes the most to the total radiation?

Collisional-Radiative model => Photon Emission Coefficient x photon energy

=> Radiative power Coefficient (2s-2p,,,,& total)

The 2s-2p line contributes 95% to the total radiative power coefficient \Rightarrow The most responsible line for radiation

What yields the uncertainty of 2s-2p PEC?

At low density, PEC ~ Collisional excitation rate from 2s to 2p, $C_e(2s, 2p)$ \Rightarrow Uncertainty of $C_e(2s, 2p)$ ~ equal to that of the Photon Emission coef. ~ equal to that of the total radiative power coef.

Summary

- W concentration and radiation increased with increasing plasma rotation in the direction opposite to the plasma current.
- But particularly processed data such as cooling rate suffer from uncertainty propagation.
- \Rightarrow Experimental evaluation of calculated data
- W⁴⁵⁺ recombination rate / W⁴⁴⁺ ionization rate: quantitative agreement

W data needs: <u>evaluated</u> ioniz. & recomb. rates <u>evaluated</u> (equilibrium-averaged) cooling rate Efforts should be concentrated on data at important T_e range

- C³⁺ was the biggest radiator, in divertor plasma
- C³⁺ was produced by ioniz. of C²⁺ and recomb. of C⁴⁺.

Recombination converted inefficient radiator, C⁴⁺ (He-like) to efficient one, C³⁺.

 \Rightarrow Recombination is another channel for enhancing radiation.

Light elements (such as C, N, Ne,,,) data needs:

<u>Evaluated</u> charge specific cooling rates for analyses of non-equilibrium plasmas Evaluated excitation rates for radiation-responsible lines, ex 2s-2p of Li-like ions