

Charge transfer processes in atom-molecule collision experiments

Paulo Limão-Vieira, F Ferreira da Silva and G García

Department of Physics, Universidade NOVA de Lisboa, Portugal and Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain

IAEA Technical Meeting Vienna, 20 December 2016

The Atomic and Molecular Collisions Laboratory

- Asst. Prof. Filipe Ferreira da Silva
- Dr. Krystyna Regeta, Post-Doc
- PhD students:
- Mr. Tiago Cunha, PT
- Ms. Emanuele Lange, BR
- Ms. Mónica Mendes, PT
- Ms. Alexandra Loupas, PT
- Ms. Rebeca Meißner, D

<u>Technicians</u>:

Mr. João Faustino

Mr. Afonso Moutinho

Funding through several schemes:

Our most close collaborations

CSIC – Madrid, ES

Gustavo García

University of Innsbruck, AT

Paul Scheier

Stephan Denifl

Sophia University – Tokyo, JP

Hiroshi Tanaka

Masamitsu Hoshino

Flinders University, AU

Michael Brunger

Université de Lyon, FR

Marie Christine Bacchus

Czech Academy of Sciences, CZ

Juraj Fedor

Data for plasma applications

- Elastic DCS; ICS; Total Cross Sections (experiment and theory);
- Electronic Excitation (experiment and theory) / high-resolution VUV spectroscopy
- Japan-Portugal-Spain-Australia (from 2003):

GeF₄; SiF₄, CF₄; BF₃; C₄F₆; CF₃Cl; CF₂Cl₂; CFCl₃; 1,3-C₄F₆, c-C₄F₆ and 2-C₄F₆; CCl4; F₂CO; C₂F₄

COS; CS₂;H₂O; CH₄; SiH₄; GeH₄; C₆H₆; CH₃F; CH₃Cl; CH₃Br; CH₃I; O₂

• UK-Portugal (2006): CF_3I , C_2F_4 and CF_x (x = 1 - 3) radicals

Overview

Motivation Introduction	 Negative ion formation
	electron transfer
	ion-pair formation
Experimental set-up	
Results	
	 acetic acid pyrimidines nitromethane
Conclusions	meenane

Motivation

Collisional ionisation processes between atoms A and molecules BC

Motivation

Negative ions formation from molecular targets

Electron transfer in atom-molecule collisions:

- Studying chemical reactions understand radiation induced damage;
- Collisional excitation and dissociation;
- Site- and bond-selectivity (pyrimidines, purines, imidazole);
- The role of the collision complex pathways;
- Competitive (even concerted) fragmentation mechanisms in pyrimidines and purines.

Motivation

- access to parent molecular states which are not accessible in EA (states positive EA);
- role of vibrational excitation of the parent neutral molecule collision dynamics

Eur. Phys. J. D (2016) 70: 130	
DOI: 10.1140/epid/e2016-70159-8	THE EUROPEAN
bol. 10.1140/epju/e2010-10105-0	DUVEICAL TOUDNAL D
	PHISICAL JOURINAL D

Regular Article

Kinetic-energy release distributions of fragment anions from collisions of potassium atoms with D-Ribose and tetrahydrofuran^{*,**}

André Rebelo¹, Tiago Cunha¹, Mónica Mendes¹, Filipe Ferreira da Silva¹, Gustavo García², and Paulo Limão-Vieira^{1,a}

² Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain

DEA - resonances;

direct and statistical dissociation;

¹ Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal

The crossed molecular beam setup in Lisbon

Complex internal rearrangement yielding OH⁻

Meneses, Widmann, Cunha, Gil, da Silva, Calhorda and PLV. Phys. Chem. Chem. Phys. (2017) DOI: 10.1039/c6cp06375f 10

¹ N-H	4.29	3.40	0.89
³ N-H	5.80	4.50	1.30
CH ₂ -H	4.54	1.82	2.23
⁶ C-H	4.98	2.76	2.72

Bond

Ptasinska et al. J. Chem. Phys. 123 (2005) 124302

Site- and bond-selectivity

6-dimethyladenine 12

Autodetachment suppression & Coulombic complex stabilization

1-methyl- thymine

3-methyl-uracil

N-site de-methylation in pyrimidine bases as studied by low energy electrons and *ab initio* calculations

D. Almeida,^a D. Kinzel,^b F. Ferreira da Silva,^a B. Puschnigg,^c D. Gschliesser,^c P. Scheier,^c S. Denifl,^{*c} G. García,^{de} L. González^b and P. Limão-Vieira^{*a}

Cite this: Phys. Chem. Chem. Phys., 2013, 15, 11431

 Table 1
 Scaled virtual orbital energies (SVOEs) from HF/6-31G* calculations for the optimized neutral equilibrium molecules (see Fig. 1), in eV

Compound	π_1^*	π_2^*	π_3^*	$\sigma^*(N-CH_3)$
3meU	0.40	1.94	5.39	6.06
1meT	0.48	1.91	5.58	5.35

Almeida, Kinzel, Silva, Puschnigg, Gschliesser, Scheier, Denifl, Garcia, Gonzalez and PLV, *Phys. Chem. Chem. Phys.* **15** (2013) 11431

Ferreia da Silva, Matias, Almeida, García, Ingólfsson, Flosadóttir, Ómarsson, Ptasinska, Puschnigg, Scheier, PLV, Denifl J. Am. Soc. Mass. Spectrom. 24 (2013) 1787

$K + CH_3NO_2$ and $K + CD_3NO_2$

uncertainty ≈ 20%

Conclusions

- site- and bond-selective mechanism in purines;
- the electron donor can greatly affect the chemical pathways of the reaction (e.g. CH₃NO₂);
- compared to an isolated TNI formed by free electron capture, the anion in the vicinity of a K⁺ favours dissociation rather than autodetachment;
- K⁺ may delay autodetachment, allowing for intramolecular electron transfer
- Branching ratios (uncertainties up to 20%) and the collision dynamics;
- Provide K⁺ energy loss profiles.