Basis Generator Method Calculations for Charge-Transfer Collisions Involving Few-Electron Systems

Tom Kirchner

redefine THE POSSIBLE.

(日) (四) (분) (분) (분)

Few-electron dynamics

- Challenging because of nonseparability
- Interesting because of nonseparability
- Relevant for applications, but uncertainty estimates are difficult

Today's presentation

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

- The basis generator method (BGM) for multielectron collision problems
- A few illustrations for (low-energy)
 charge-transfer collisions

Theoretical Considerations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Semiclassical approximation

Justification: de Broglie wavelength of projectile $\lambda_K = h/p = h/(\mu v) \ll a_0$ at $E_P \ge 1$ keV/amu

 \rightarrow (curved or) straightline projectile trajectory

 $\boldsymbol{R}(t) = (\boldsymbol{b}, \boldsymbol{0}, \boldsymbol{v}t)$

b: impact parameter *v*: projectile speed

(日) (四) (三) (三) (三)

electrons described fully quantum mechanically

Semiclassical approximation

Nonrelativistic theory: time-dependent Schrödinger equation (TDSE) ($\hbar = m_e = e = 1$)

$$\left(\hat{H}_{e}(t)-i\partial_{t}\right)|\psi(t)
angle=0, \ |\psi(t_{i})
angle=|\phi_{i}
angle$$

$$\hat{H}_{e}(t) = \hat{T}_{e} + \hat{V}_{e-n}(t) + \hat{V}_{e-e} + rac{Z_{p}Z_{t}}{R(t)}$$

- \hat{T}_e : kinetic energies of electrons
- $\hat{V}_{e-n}(t)$: time-dependent electron-nucleus Coulomb interaction
- \hat{V}_{e-e} : electron-electron Coulomb interaction

Discussion I

- Explicit solution feasible for N = 2
 - \rightarrow bare ion He (H₂) collisions
 - Molecular close coupling
 - Atomic close coupling
 - Time-dependent lattice (TDL) methods
 - Classical-trajectory Monte Carlo (CTMC)

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

• • • • •

N ≥ 3: (mostly) beyond present capabilities

Discussion II

Approx. alternatives for $N \ge 2$ target electrons \longrightarrow model uncertainties

- Ansatz (independent electrons IEM):
- $\hat{H}_{e}(t) \rightarrow \sum_{j=1}^{N} \hat{h}_{j}(t), \quad i\partial_{t}\psi_{j}(\boldsymbol{r},t) = \hat{h}(t)\psi_{j}(\boldsymbol{r},t)$ $\hat{h}(t) = -\frac{1}{2}\Delta \frac{Z_{T}}{r} \frac{Z_{p}}{|\boldsymbol{r} \boldsymbol{R}(t)|} + v_{ee}(\boldsymbol{r},t)$
- Choice of vee defines model
- Time-dependent density functional theory (TDDFT) provides foundation

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Discussion III

Choices:

 $v_{ee}(\mathbf{r}, t) = v_{ee}^{0}(r)$ no response $v_{ee}(\mathbf{r}, t) = f(t)v_{ee}^{0}(r)$ global target response^{*} $v_{ee}(\mathbf{r}, t) = v_{ee}[\psi_{j}](\mathbf{r}, t)$ microscopic response

Standard methods can be used within IEM

Basis Generator Method (BGM)**:

a close-coupling method based on atomic orbitals and dynamically adapted pseudo states

* Kirchner *et al.*, PRA 2000 **Lüdde et al. JPB 1996, Kroneisen et al. JPA 1999

Discussion IV

Single-particle solutions \rightarrow many-electron info

• Option 1: IEM (multinomial) analysis

e.g. single and double capture for N = 2:

$$P_1 = 2p_{cap}(1-p_{cap})$$
$$P_2 = p_{cap}^2$$

- Option 2: determinants (density matrices)*
- Further options: correlation integrals**, single-active electron model, ...

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

*Lüdde and Dreizler JPB 1985 ** Baxter and Kirchner PBA 2016

Illustrations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

He²⁺- He: single and double capture

single capture

double capture

----: two-electron -----: DFT-based Baxter and Kirchner, PRA **93**, 012502 (2016)

5 9 9 C

< ∃ > <

Ne¹⁰⁺- Ne: single capture

$$m{s}_{nl} = \sigma_{nl} / \sum_{nl} \sigma_{nl}$$

IEM level

Liu et al., PRA **89**, 012710 BGM: PRA **92**, 032712

 $E_P = 4.54 \text{ keV/amu}$

メロト メヨト メヨト メ

Ne¹⁰⁺- Ne: x-ray spectra

Expt.: Ali et al., Astrophys. J. Lett. **716**, L95

Liu et al., PRA **89**, 012710 BGM: PRA **92**, 032712

 $E_P = 4.54 \text{ keV/amu}$

2

<ロ> (四) (四) (三) (三) (三)

Molecules

- More difficult than atoms because of multi-center structure
- Electron dynamics can be described in similar way if "small" (e.g. H₂O, CH₄)^{*}
- Relevant for cometary x-ray emission

^{*} Kirchner *et al*, Adv. Quant. Chem. **65**, 315 (2013)

(日) (四) (분) (분) (분) 분

O⁶⁺- H₂O, CH₄: S,D,T capture

 $O^{6+}-H_2O$

$E_{\rm P}~({\rm keV/amu})$		BGM	Expt. [15]	CTMC [15]
1.17	SEC	59.7	47.3 ± 3.2	55.0
	DEC	15.5	8.3 ± 0.6	6.30
	TEC	4.57	3.7 ± 0.3	0.580
2.33	SEC	58.1	45.9 ± 3.1	57.4
	DEC	12.9	7.4 ± 0.5	6.53
	TEC	3.18	2.6 ± 0.2	0.586
$O^{6+}-CH_4$				
$E_{\rm P}~({\rm keV/amu})$		BGM	Expt. [15]	CTMC [15]
1.17	SEC	52.7	42.9 ± 2.9	54.2
	DEC	26.6	17.8 ± 1.3	6.76
	TEC	4.94	2.7 ± 0.2	0.659
2.33	SEC	50.9	50.2 ± 3.4	56.7
	DEC	23.2	16.3 ± 1.2	6.94
	TEC	4.30	2.3 ± 0.2	0.634

Expt & CTMC: Machacek et al., Astrophys. J. 809, 75 (2015)

O⁶⁺- H₂O, CH₄: x-ray spectra (SC)

CTMC (\diamond): Machacek et al., Astrophys. J. **809**, 75 (2015) BGM no response (\diamond); BGM response (\triangle)

æ

Conclusions: multielectron systems

Model uncertainties (IEM):

- Effective potential
- Multielectron analysis
- Subsequent processes (autoionization, radiative cascades, ...)

Uncertainty estimates currently based on:

- Comparisons of different model (variants)
- Comparisons with experimental data

Need benchmark data for benchmark systems!

Ne¹⁰⁺- He,Ne,Ar: single *n*-capture

 $E_P = 4.54 \text{ keV/amu}$

Liu et al., PRA **89**, 012710 BGM: PRA **92**, 032712 CTMC and Expt: Ali et al., Astrophys. J. Lett. **716**, L95

Thanks to ...York UniversityM. Baxter
A. Leung
M. HorbatschU FrankfurtH. J. Lüdde

... and to you for your attention!

(日) (四) (분) (분) (분)