First Step Benchmark of Inelastic Collision Cross Sections for Heavy Ions using Charge State Evolutions via Target Penetration

Alex M Imai, Viatcheslav P Shevelko

Department of Nuclear Engineering, Kyoto University N. Lebedev Physical Institute of Russian Academy of Sciences

M. Imai *et al.*, J. Plasma Fusion Res. SERIES Vol.7, pp.323-326 (2006). 2/26

M. Imai *et al.*, J. Plasma Fusion Res. SERIES Vol.7, pp.323-326 (2006). 3/26

Single-electron capture cross sections for W⁺ ions

4/26

Background

- You require not just accuracy of calculated cross sections but also their completeness.
- Experimentalists would like the evaluation of theoretical data to be done with experiments, but in many cases, there exist few experiments directly comparable to theories.
- Experimentalists are able to provide very accurate experimental results in some cases.

Experimental apparatus in Japan Atomic Energy Agency

Equilibrium and pre-equilibrium charge-state distributions of 2.0 MeV/u C ions after C-foils

26

Equilibrium and pre-equilibrium charge-state distributions of 2.0 MeV/u C ions after C-foils

Computer codes for charge-state evolutions

- ETACHA:
 - a program for calculating charge states at GANIL energies, (10 80 MeV/u)
 - J.-P. Rozet, C. Stéphan, D. Vernhet, NIM B 107, 67 (1996).

Matrix Method:

- Charge evolution of swift-heavy-ion beams explored by matrix method,
- O. Osmani, P. Sigmund, NIM B 269, 813 (2011).

ETACHA3, ETACHA4: Extention of charge state distribution calculations for ion-solid collisions towards low velocities and many-electron ions,
E. Lamour, P. D. Fainstein, M. Galassi, C. Prigent, C. A. Ramirez,
R. D. Rivarola, J.-P. Rozet, M. Trassinelli, D. Vernhet, PRA 92, 042703 (2015).

BEAR (Balance Equations for Atomic Reactions)
V. P. Shevelko, N. Winckler, I. Yu. Tolstikhina, NIM B 377, 77 (2016).

Set of cross sections on the cutting-board

Case		Cross Sections			References		Accuracy
(1)-(3)		e-cap. OBK e-loss relativis ex. relativis		stic Born stic Born	JPB37, JETP119 NIMB18	201(2004) 9,1(2014) 4,295(2001)	50% 30-50% 30-50%
E	(4) d TACHA	$\frac{y_i}{\mathrm{d}x} = \sum_{i \neq j}$	$y_j(x)$	$y_{ji} - \sum_{i \neq j} y_i $	$(x)\sigma_{ij}$	$\sum_{i} y_j = 1$	Scaling used partly
Cas e	Calculation		Yields Y _i		Density Effect		
(1)	Present			Charge-State 7 ($C^{0} - C^{6+}$)		Not involved.	
(2)						High <i>n</i> states are ionized. JPB38,2675(2005)	
(3)				CS + n = 1,2-state 18 ($C^0 - C^{6+}$)		High <i>n</i> states	are ionized.
(4)	ETACHA4 PRA92,042703(2015)			CS + n/-su many(C° -	bstate Shorter collision interva- C ⁶⁺) are involved in the RE.		n intervals the RE.
HARA HARA					TT		10/00

Model calculations using sets of cross sections for charge-state distributions of 2.0 MeV/u C ions after C-foils

Model calculations using sets of cross sections for charge-state distributions of 2.0 MeV/u C ions after C-foils

Model calculations using sets of cross sections for charge-state distributions of 2.0 MeV/u C ions after C-foils

Scores for reproducibility of the **equilibrium charge-state distributions** of 2.0 MeV/u C ions after C-foils

Shifted model calculations using sets of cross sections for charge-state distributions of 2.0 MeV/u C ions after C-foils

Shifted model calculations using sets of cross sections for charge-state distributions of 2.0 MeV/u C ions after C-foils

Shifted model calculations using sets of cross sections for charge-state distributions of 2.0 MeV/u C ions after C-foils

Shifted model calculations using sets of cross sections for charge-state distributions of 2.0 MeV/u C ions after C-foils

Shifted model calculations using sets of cross sections for charge-state distributions of 2.0 MeV/u C ions after C-foils

Scores for reproducibility of the **pre-equilibrium charge-state distributions** of 2.0 MeV/u C ions after C-foils

$$Score = \sqrt{\frac{\sum_{i} (y_{i}^{pre-eq,cal} - y_{i}^{pre-eq,exp})^{2}}{N}}$$

N = 97

Case	Model	Cross Sections	Score	Score1	Score2
(1)	Simple	Better	0.0570	1602	12.7
(2)	Simple	Better	0.0792	699	12.7
(3)	Intermediate	Better	0.0282	138	4.8
(4)	Full	General	0.0747	776	13.2

Summary and outlook

- You require not just accuracy of calculated cross sections but also their completeness.
- Experimentalists would like the evaluation of theoretical data to be done with experiments, but in many cases, there exist few experiments directly comparable to theories.
- Experimentalists are able to provide very accurate experimental results in some cases.
- It would be possible to evaluate set of calculated cross sections (e-capture, loss, excitation, de-excitation) using charge state evolution data.
- It would be also possible to reduce the collision energy by using dense gas targets.

26/26

Vielen Dank und Frohe Weihnachten!

www.youtube.com/watch?v=CChdGosT300

© Nakamura Jakuemon V

Charge-state distributions of 2.0 MeV/u C^{q+} ions after C-foils

Shifted model calculations using sets of cross sections for charge-state distributions of 2.0 MeV/u C ions after C-foils

