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Advantage
● Uncertainty quantification
● Assumption selection (model selection)

Probabilistic modeling
● Quantify what we assume.
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Background:
Fractional abundance of W

Measured intensity Emission coef. Fractional abundance

Fractional abundance of W is an 
important data essential to the 
tungsten transport diagnostics.

Significant disagreement has been 
reported among the results by 
different groups, in particular q < 30.



Measurement



Objective:
Inference of ξq from the experimental data
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How much we should assume

Parameters:
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Image from http://pingax.com/regularization-implementation-r/

Too strong assumption. Too weak assumption.

How smooth profile we should assume?



Introduce hyperparameter

Parameters:

ξ
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Fractional abundance
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distribution
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Smooth function of T
e

Smooth function of r and t

ξ
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T
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Prior (assumption)

How strong we assume.

It is necessary to quantify the smoothness.
● Discretize the profile into finite number points
● Apply prior distribution for the difference Δξ
● Parameterize the prior by hyperparameter



Choose how much we should assume
from data

Image from http://pingax.com/regularization-implementation-r/

Too strong assumption. Too weak assumption.

λ Large λsmall λ
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How strong we assume.



Choose how much we should assume
from data.

How should we remove the dependence on λ
ξ
?

This avoids the under and over-fitting.

Too strong assumption. Too weak assumption.

λ Large λsmall λ

∝

Marginalization (apply prior for λ
ξ 
and integrate out)



Result

Our model well represents the measured data.

No under-fitting



Result

Inferred ξ
q
 profiles 

are smooth enough.

No over-fitting

Our results are close to those by Putterich et al,
but our peak positions locate at the smaller T

e 
side.

Our results may be used as benchmark for future theoretical works.
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Systematic noise in LHD-TS system

Random noise： Varies randomly.
Thermal noise, shot noise

Systematic noise： Has large correlation.
Inaccurate calibration, model, ...

Can be analyzed by
legacy statistic.

Bayesian statistics

Significant dependent noise
due to mis-calibration.



Current
calibration factor
for channel i

True
calibration factor
for channel i

Mis-calibration
noise
(to be estimated)

Systematic 
noise 
model

Objective:
Machine learning of the mis-calibration noise



Probabilistic modeling

Experiment 1

Experiment 2

Experiment M
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Gaussian Process for multiple frame data
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Gaussian Process for multiple frame data
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Mis-calibration
noise
(to be estimated)

Current
calibration factor
for channel i

True
calibration factor
for channel i

Results

210 frames of the 
ne observation data
by LHD Thomson system.



Application to the derivative inference.
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Summary1

We inferred

● the fractional abundance of W ions 
from LHD experimental data

● The systematic noise for the LHD-
TS system

by applying the Bayesian 
inference.



Summary2
Prior
Our assumption on data.

Likelihood
How data (or noise) 
behaves.
e.g. 
Gaussian with mean θ

Posterior
Full knowledge of θ
Incl. mean and 
standard deviation

Bayesian statistics states  
“the importance of the assumption”.

The main challenge in Bayesian statistics 
is how we quantify our assumption.

There is no super-tool that is used for all the purposes.
We A.M. data unit may need to develop our own statistical models to 
● model the theoretical results
● update the data with experimental data

Probabilistic 
modeling

My message



Summary2

Our second attempt is to infer the systematic noise for LHD-TS 
system from a large amount of LHD experiment data.
(data-driven science)

Revealed more detailed structure of n
e
.



Details 1:
Additive approximation

Current
calibration factor
for channel i

True
calibration factor
for channel i

Mis-calibration
noise
(to be estimated)
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Mis-calibration noise 
is not additive.

Additive approximation
with iteration.

y  =  f  +  n  +  n
Δ



Details 2:
Non Gaussian prior

The distribution of Δ may not be Gaussian.

We adopt a Cauchy distribution for Δ.

Hierarchical model



Details 2:
Non Gaussian prior

There are some outliers.
The distribution of n may not be Gaussian.

We adopt a Cauchy distribution also for n.



Application to the derivative inference.



Inference for the training data
Original data

Post-calibration data



Inference for the test data

We made this post-calibration for test data 
that are NOT used for the Δ inference.

Detailed structures become apparent,
suggesting no over-fitting.



Application to the derivative inference.
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