

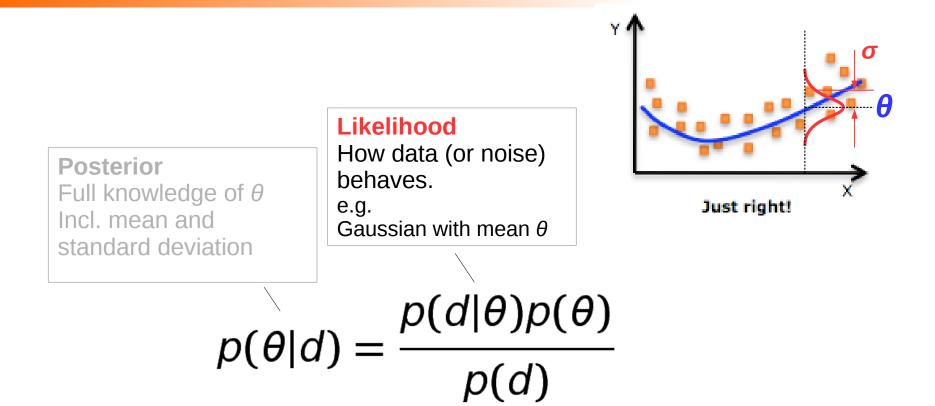
Bayesian Inference for the LHD Experiment Data

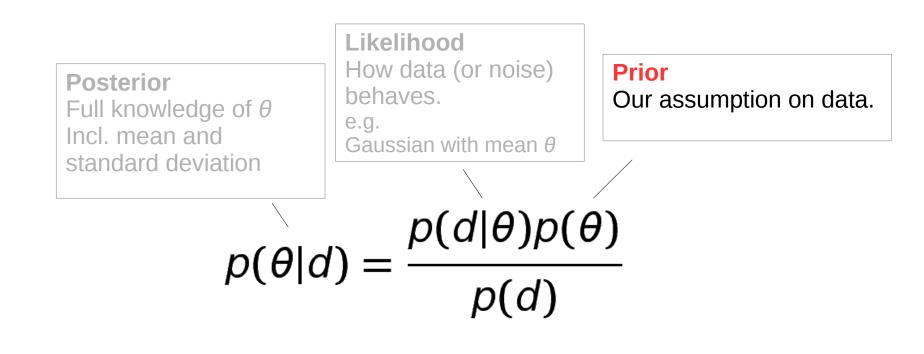
Keisuke Fujii

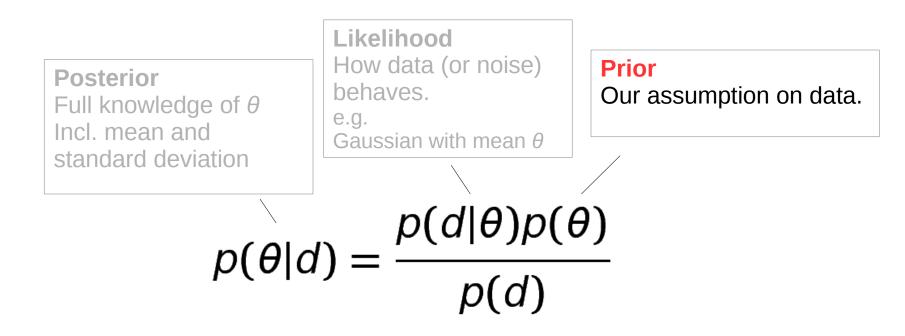
Posterior

Full knowledge of θ Incl. mean and standard deviation

 $p(\theta|d) = \frac{p(d|\theta)p(\theta)}{p(d)}$







Probabilistic modeling

Quantify what we assume.

Advantage

- Uncertainty quantification
- Assumption selection (model selection)

Outline

- Brief introduction
- Evaluation of fractional abundance data for W
 - Avoiding over and under fitting

-model selection-

- Evaluation of systematic noise of LHD Thomson scattering system.
- Summary

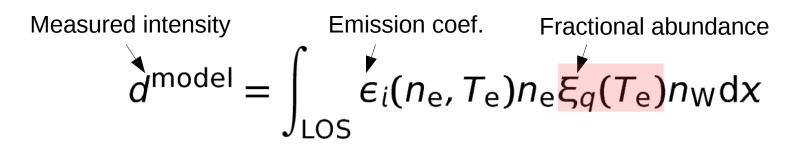
Outline

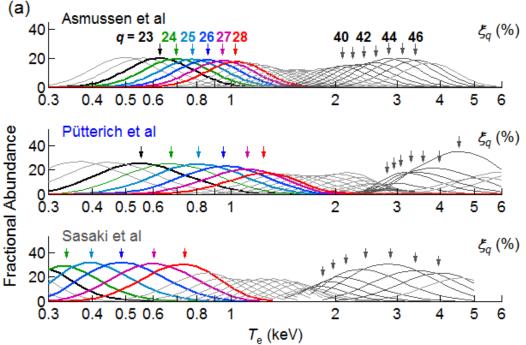
- Brief introduction
- Evaluation of fractional abundance data for W
 - Avoiding over and under fitting

-model selection-

- Evaluation of systematic noise of LHD Thomson scattering system.
- Summary

Background: Fractional abundance of W

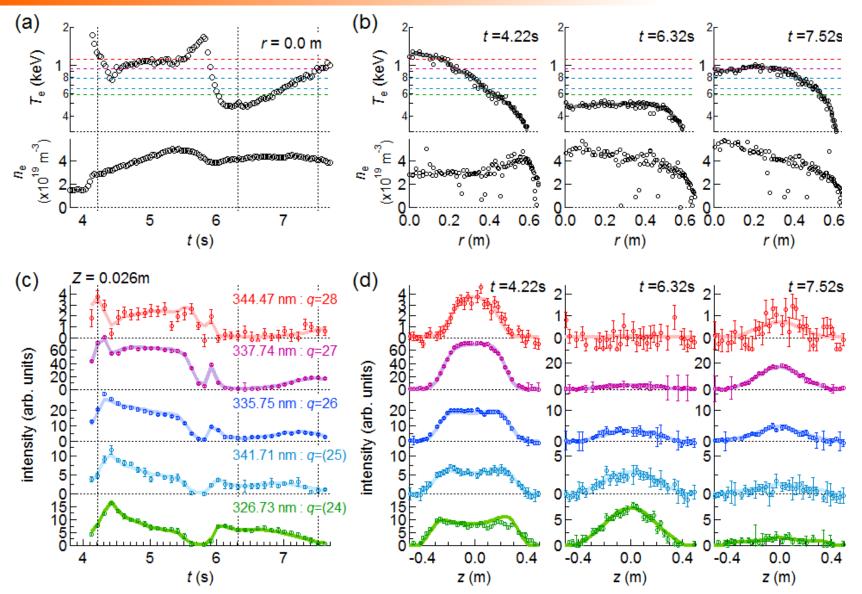




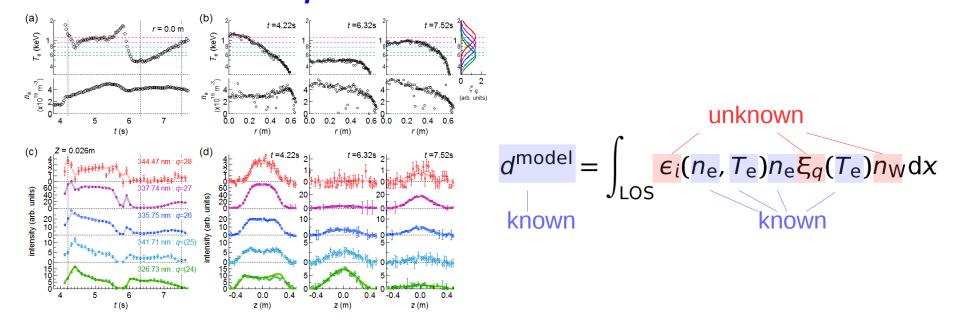
Fractional abundance of W is an important data essential to the tungsten transport diagnostics.

Significant disagreement has been reported among the results by different groups, in particular q < 30.

Measurement



Objective: Inference of ξ_q from the experimental data



Parameters:		Assumptions
ε _i n _e	Emission rate per 1 ground state ion.	Independent of $n_{\rm e}$ and $T_{\rm e}$
ξ_q	Fractional abundance	Smooth function of T_{e}
n _w	Total tungsten density distribution	Smooth function of <i>r</i> and <i>t</i>

Eng.

How much we should assume

Parameters:		Assumptions
e ⁱⁿ e	Emission rate per 1 ground state ion.	Independent of $n_{\rm e}$ and $T_{\rm e}$
ξ_q	Fractional abundance	Smooth function of T_{e}
n _w	Total tungsten density distribution	Smooth function of <i>r</i> and <i>t</i>

How smooth profile we should assume?

Too strong assumption.

Too weak assumption.

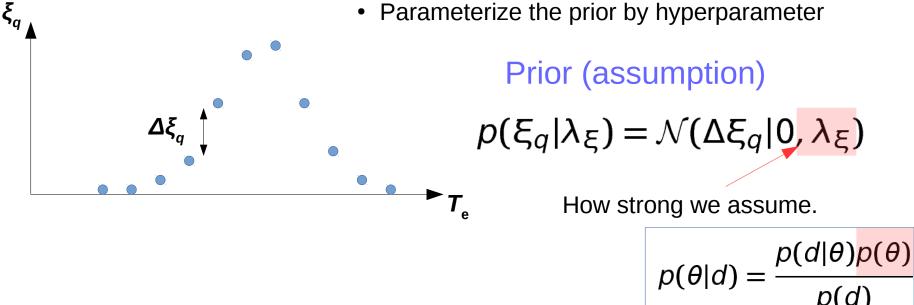
Image from http://pingax.com/regularization-implementation-r/

Introduce hyperparameter

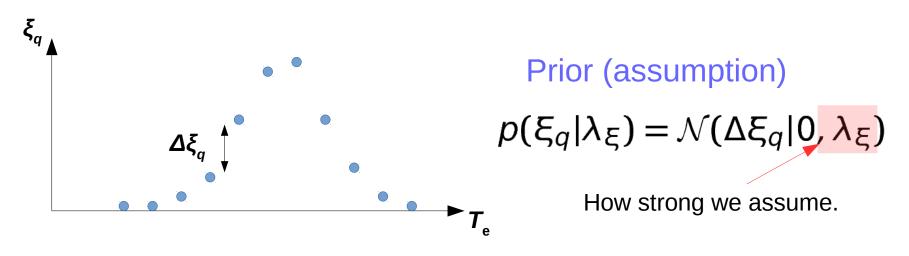
Parameters:		Assumptions
ξ_q	Fractional abundance	<u>Smooth</u> function of T_{e}
n _w	Total tungsten density distribution	Smooth function of <i>r</i> and <i>t</i>

It is necessary to quantify the smoothness.

- Discretize the profile into finite number points
- Apply prior distribution for the difference $\Delta \xi$
- Parameterize the prior by hyperparameter



Choose how much we should assume from data



Too strong assumption.

Too weak assumption.

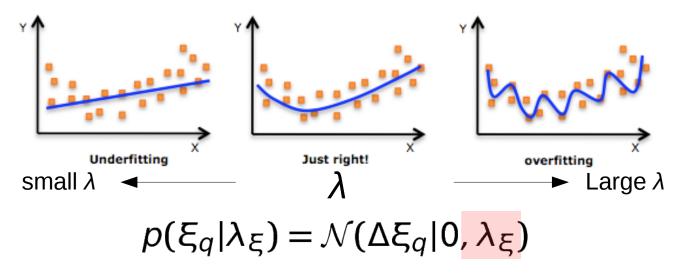


Image from http://pingax.com/regularization-implementation-r/

Choose how much we should assume from data.

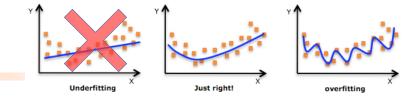
How should we remove the dependence on λ_{s} ?

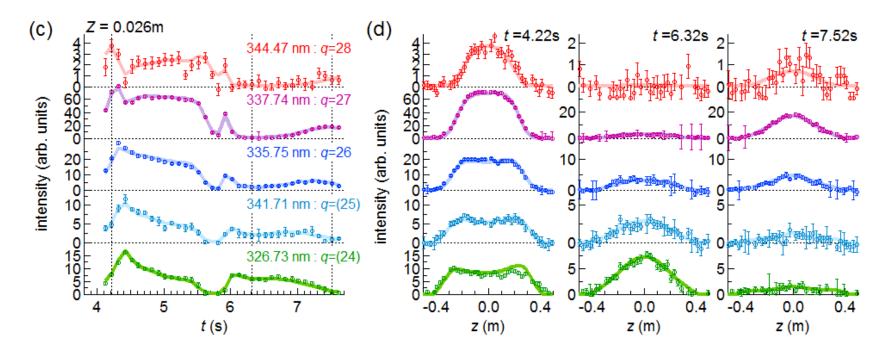
Marginalization (apply prior for λ_{ϵ} and integrate out)

$$p(\xi_q|d) \neq \int p(d|\xi_q)p(\xi_q|\lambda_{\xi})p(\lambda_{\xi})d\lambda_{\xi}$$

This avoids the under and over-fitting.

Result





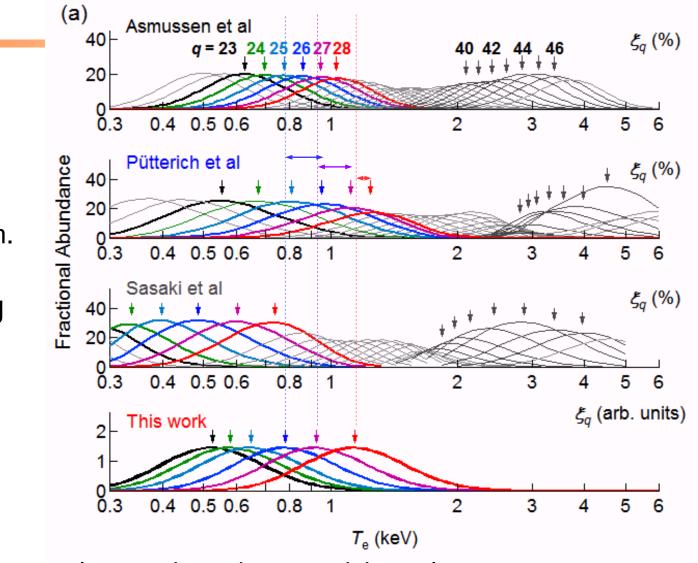
Our model well represents the measured data.

No under-fitting

Result

Inferred ξ_q profiles are smooth enough.

No over-fitting



Our results are close to those by Putterich et al, but our peak positions locate at the smaller T_{ρ} side.

Our results may be used as benchmark for future theoretical w

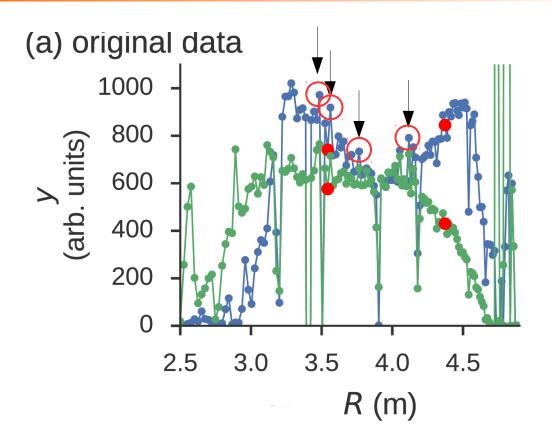
Outline

- Brief introduction
- Evaluation of fractional abundance data for W
 - Avoiding over and under fitting

-model selection-

- Evaluation of systematic noise of LHD-TS diagnostic system. arXiv:1607.05380
- Summary

Systematic noise in LHD-TS system



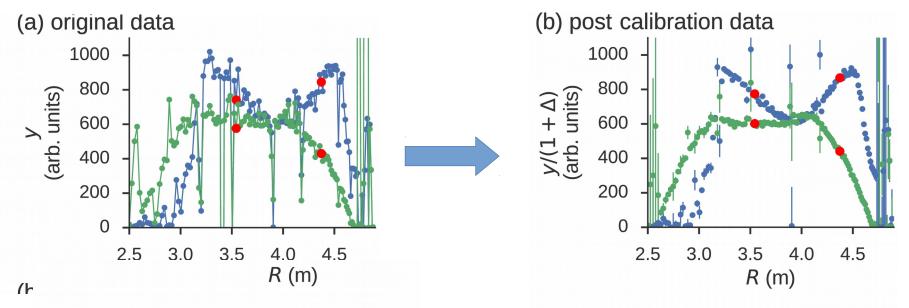
Significant dependent noise due to mis-calibration.

Random noise: Varies randomly. Thermal noise, shot noise

Systematic noise : Has large correlation. Inaccurate calibration, model, ... Can be analyzed by legacy statistic.

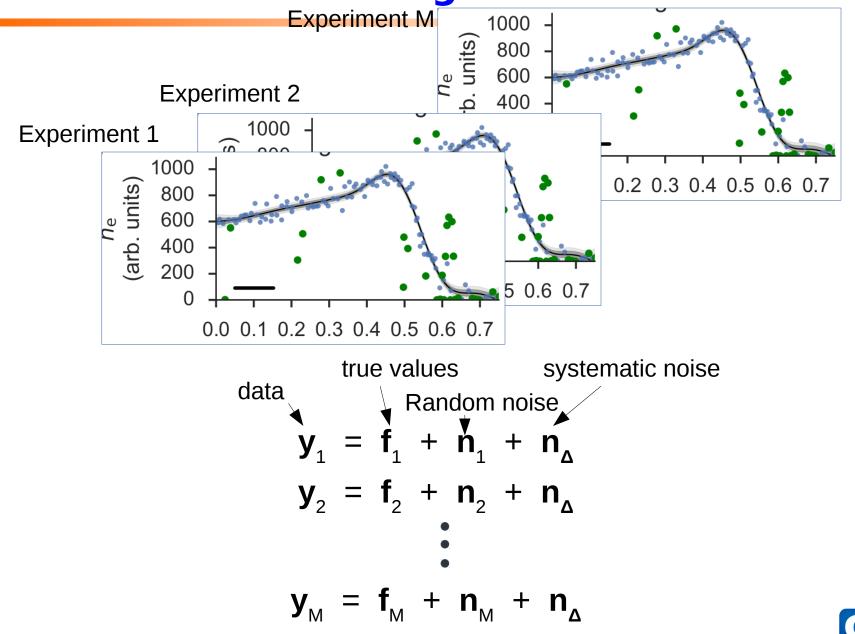
Bayesian statistics

Objective: Machine learning of the mis-calibration noise



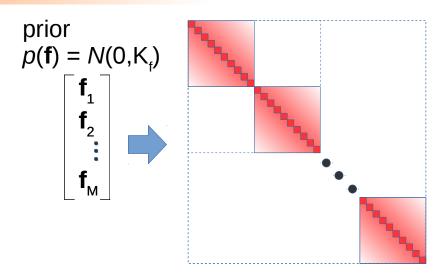
Systematic noise model	Current calibration factor for channel <i>i</i>	
$R_i = R_i^0 (1 + \Delta_i.)$		
True calibration factor	Mis-calibration noise	
for channel <i>i</i>	(to be estimated)	

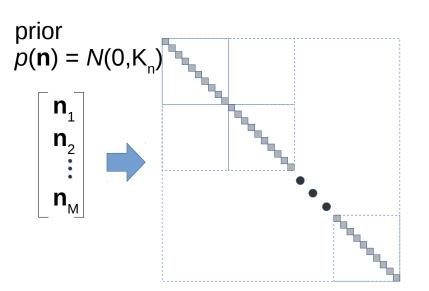
Probabilistic modeling



Gaussian Process for multiple frame data

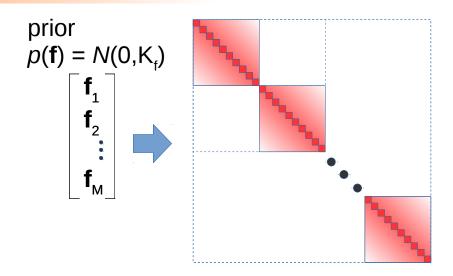
$$\mathbf{y}_{1} = \mathbf{f}_{1} + \mathbf{n}_{1} + \mathbf{n}_{\Delta}$$
$$\mathbf{y}_{2} = \mathbf{f}_{2} + \mathbf{n}_{2} + \mathbf{n}_{\Delta}$$
$$\mathbf{y}_{M} = \mathbf{f}_{M} + \mathbf{n}_{M} + \mathbf{n}_{\Delta}$$

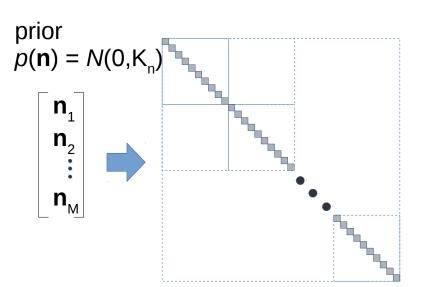


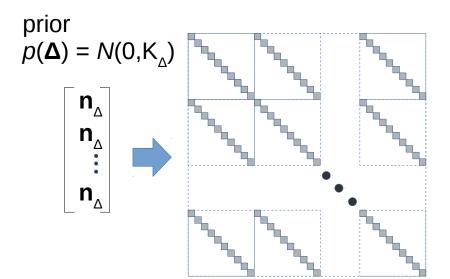


Gaussian Process for multiple frame data

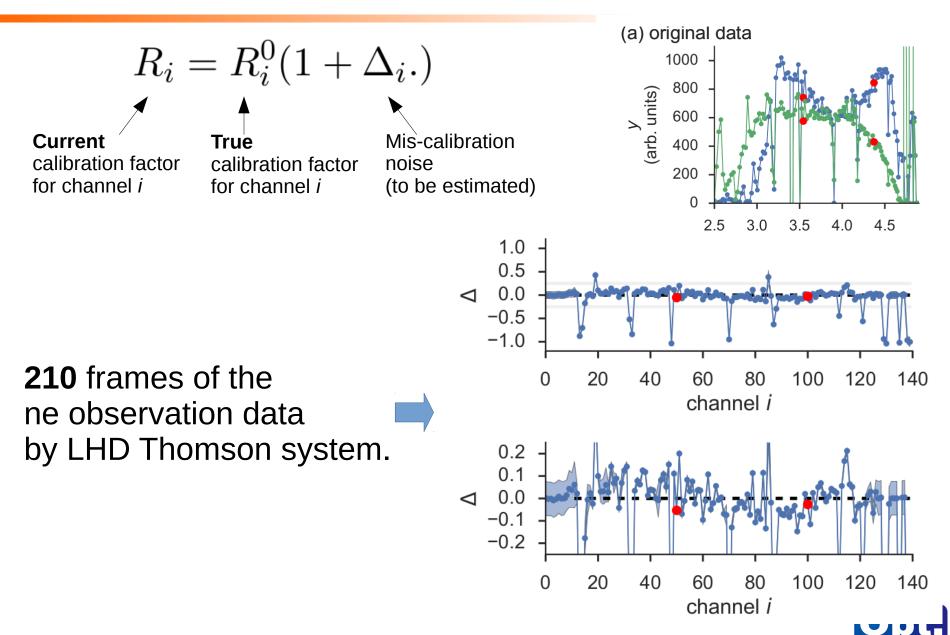
$$\mathbf{y}_{1} = \mathbf{f}_{1} + \mathbf{n}_{1} + \mathbf{n}_{\Delta}$$
$$\mathbf{y}_{2} = \mathbf{f}_{2} + \mathbf{n}_{2} + \mathbf{n}_{\Delta}$$
$$\mathbf{y}_{M} = \mathbf{f}_{M} + \mathbf{n}_{M} + \mathbf{n}_{\Delta}$$





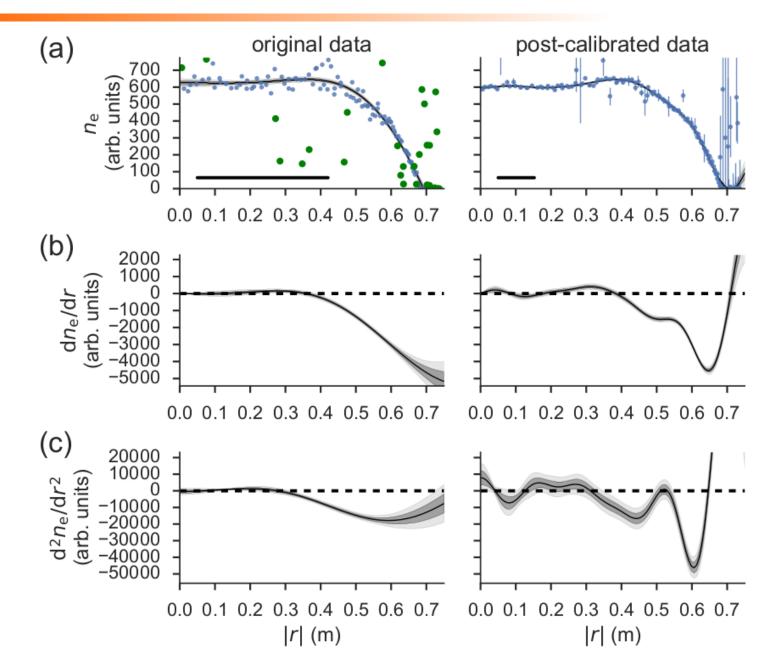


Results



Ena.

Application to the derivative inference.



Outline

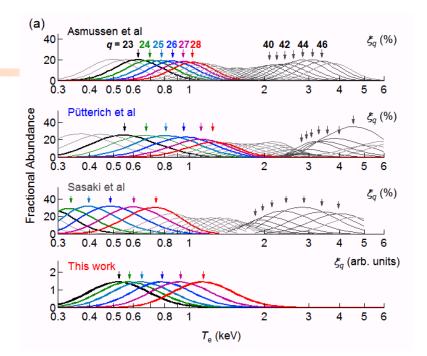
- Brief introduction
- Evaluation of fractional abundance data for W
 - Avoiding over and under fitting -model selection-
- Evaluation of systematic noise of LHD-TS diagnostic system.
- Summary

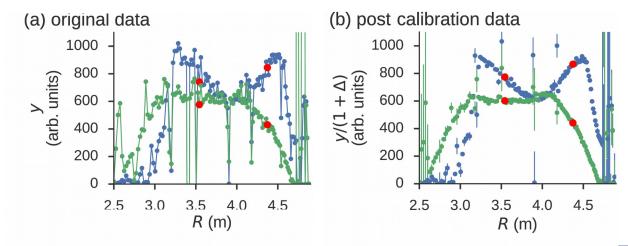
Summary1

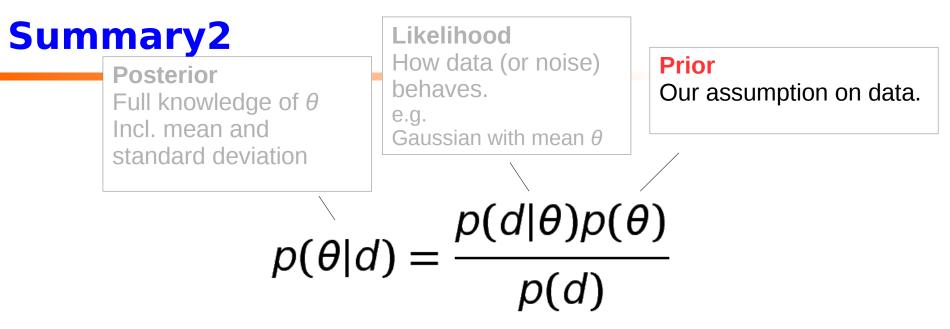
We inferred

- the fractional abundance of W ions from LHD experimental data
- The systematic noise for the LHD-TS system

by applying the Bayesian inference.







Bayesian statistics states "the importance of the assumption".

The main challenge in Bayesian statistics is **how we quantify our assumption**.

Probabilistic modeling

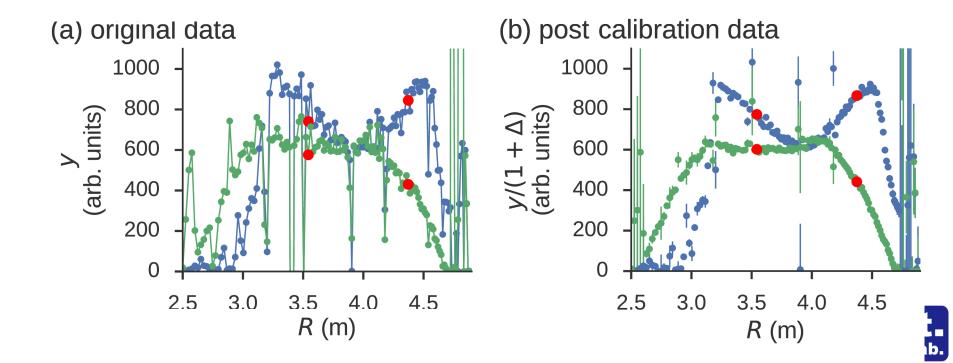
My message

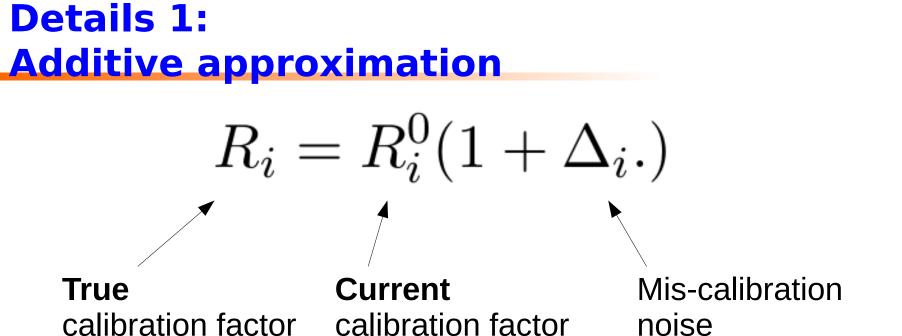
There is **no super-tool** that is used for all the purposes. We A.M. data unit may need to develop our own statistical models to

- model the theoretical results
- update the data with experimental data

Our second attempt is to infer the systematic noise for LHD-TS system from a large amount of LHD experiment data. (data-driven science)

Revealed more detailed structure of n_{e} .





for channel *i*

noise (to be estimated)

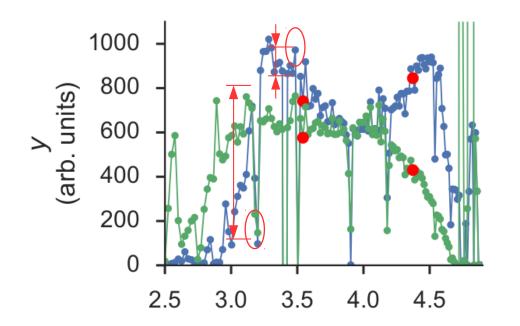
$$\mathbf{y} = \mathbf{f} + \mathbf{n} + \mathbf{n}_{\Delta}$$
$$\mathbf{y}_{j} = \mathbf{f}_{j} + \mathbf{n}_{j} + \mathbf{f}_{j} \Delta$$

for channel *i*

Mis-calibration noise is not additive.

Additive approximation with iteration.

Details 2: Non Gaussian prior

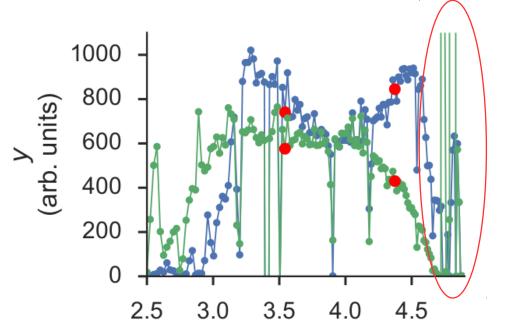


The distribution of Δ may not be Gaussian.

We adopt a Cauchy distribution for Δ .

Hierarchical model
$$\begin{cases} p(\Delta_i) = \mathcal{N}(0, \sigma_i^2) \\ p(\sigma_i^2) = \mathcal{IG}(\frac{1}{2}, \frac{\sigma_{\Delta}^2}{2}) \end{cases}$$

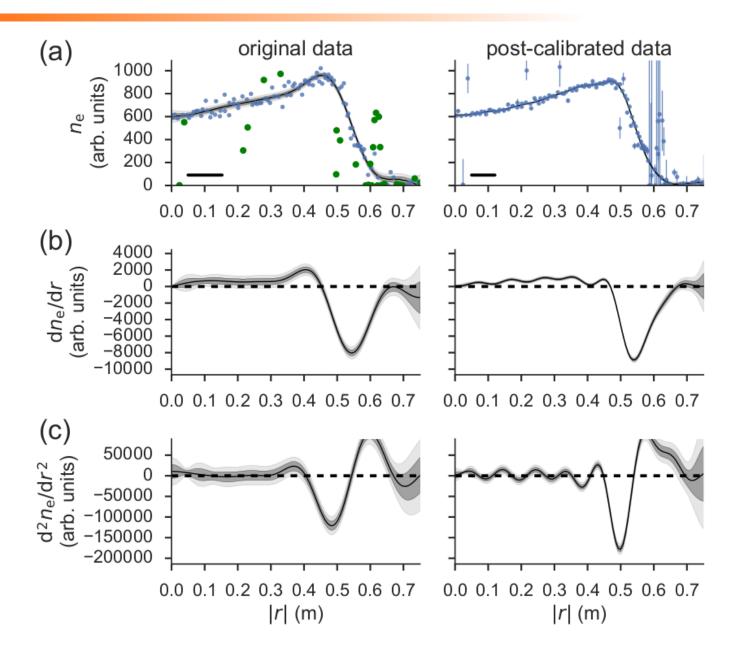
Details 2: Non Gaussian prior



There are some outliers. The distribution of **n** may not be Gaussian.

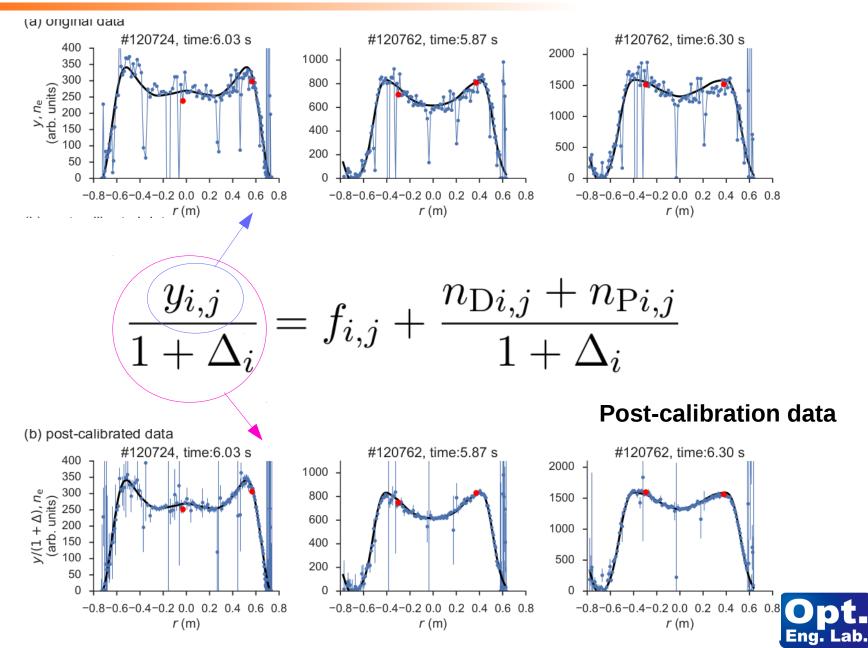
We adopt a Cauchy distribution also for **n**.

Application to the derivative inference.



Inference for the training data

Original data



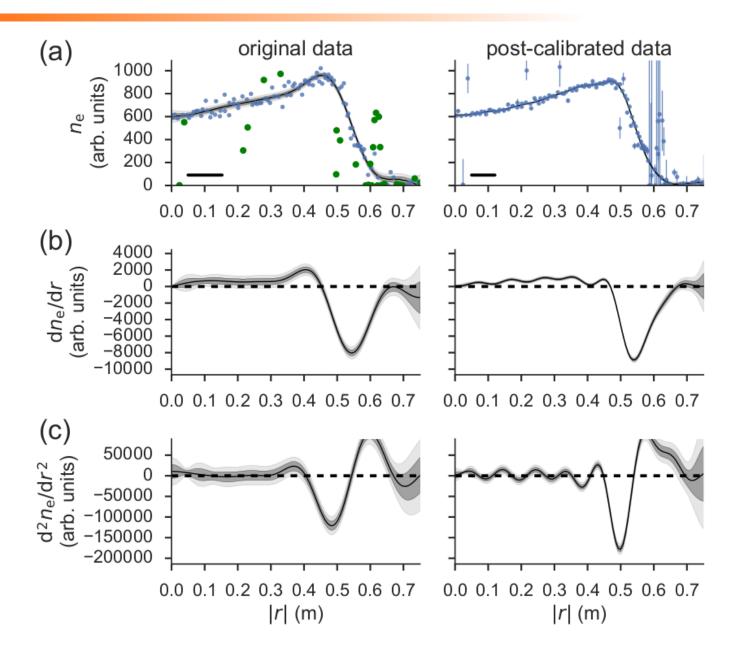
Inference for the test data

We made this post-calibration for **test data** that are NOT used for the Δ inference.



Detailed structures become apparent, suggesting no over-fitting.

Application to the derivative inference.



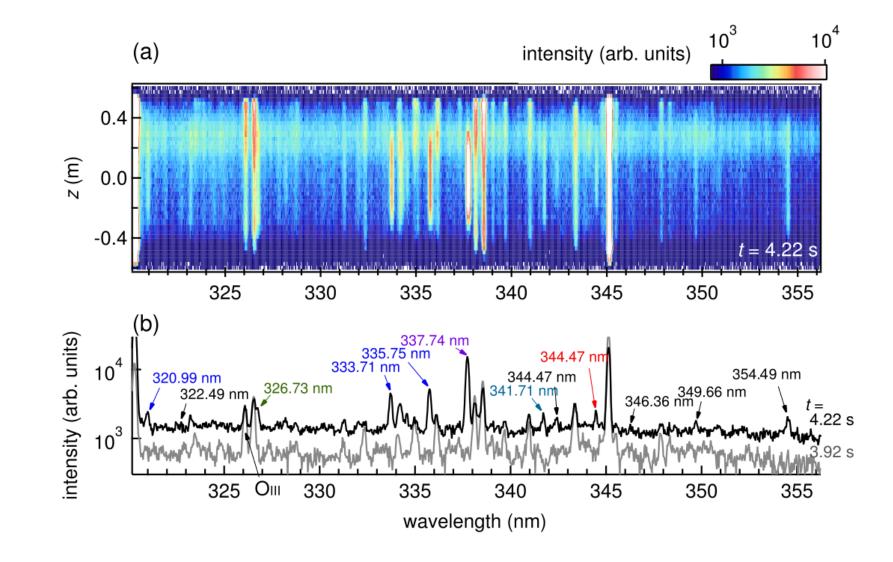


FIG. 5. (a) Two-dimensional image of the spectrum observed for the discharge #121534 at t = 4.22 s as a function of the wavelength (horizontal axis), height z (vertical axis) and intensity (by false color). (b) The spectrum observed at t = 4.22 s for the LOS with z = 0.026 m. The central wavelengths for the highly charged tungsten ion emission lines are indicated in the figure.

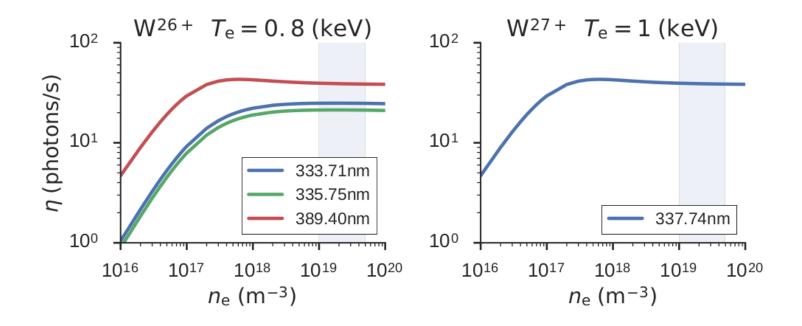


FIG. A.1. $n_{\rm e}$ dependence of η_i values for 333.71-, 335,75-, 389.40- and 337.74-nm lines estimated by collisional-radiative model [30]. The calculations were made with the assumption of $T_{\rm e} = 0.8$ keV for the q = 26 lines, while $T_{\rm e} = 1.0$ keV is assumed for the q = 27 lines. η_i linearly increases in $n_{\rm e} < 10^{17}$ m⁻³, while it becomes saturated in $n_{\rm e} > 10^{18}$ m⁻³. The $n_{\rm e}$ range considered in this work ($n_{\rm e} = 1 - 5 \times 10^{19}$ m⁻³) are indicated by shadows. Note that this calculation does not contain the ion-collision effect.