UNCERTAINTY QUANTIFICATION OF IDEAL-GAS THERMOCHEMICAL FUNCTIONS Attila G. Császár

Laboratory of Molecular Structure and Dynamics & MTA-ELTE Research Group on Complex Chemical Systems Eötvös University, Budapest, Hungary

Uncertainty Assessment and Benchmark Experiments for A&M Data IAEA Headquarters, Vienna, Austria, December 19-21, 2016

Introduction

High-accuracy thermochemical functions: H₂O, MgH, and their isotopologues

Summary

• IAEA: the equation of state (EOS) of water, especially that of heavy water, is used in the nuclear power industry

- IAEA: the equation of state (EOS) of water, especially that of heavy water, is used in the nuclear power industry
- Vienna: the isotopic composition of water follows the industry standard, the so-called Vienna Standard Mean Ocean Water (VSMOW)

- IAEA: the equation of state (EOS) of water, especially that of heavy water, is used in the nuclear power industry
- Vienna: the isotopic composition of water follows the industry standard, the so-called Vienna Standard Mean Ocean Water (VSMOW)
- IAPWS: the International Association for the Properties of Water and Steam tries to come up with a new EOS, for which new, highly accurate ideal-gas thermochemical functions are needed in the temperature range of 0 – 6000 K (old data: Friedman and Haar, 1954, also used by JANAF)

For many years it has been evident that the utilization of the observed energy levels of atoms and molecules was destined to occupy a prominent place in the application of thermodynamics and statistics to chemistry. However, it is doubtful whether the very real simplicity of this application has been appreciated as it should be. Perhaps this is not surprising when one considers the unnecessarily complicated methods often used in treating such problems. It is the purpose of this paper to give the few simple statements necessary in connection with the exact determination of certain thermodynamic properties from the energy levels of matter as supplied by spectroscopy.

[CONTRIBUTION FROM THE CHEMICAL LABORATORY OF THE UNIVERSITY OF CALIFORNIA] THE CALCULATION OF FREE ENERGY FROM SPECTROSCOPIC DATA

By W. F. GIAUQUE

RECEIVED SEPTEMBER 22, 1930 PUBLISHED DECEMBER 18, 1930

For many years it has been evident that the utilization of the observed energy levels of atoms and molecules was destined to occupy a prominent place in the application of thermodynamics and statistics to chemistry. However, it is doubtful whether the very real simplicity of this application has been appreciated as it should be. Perhaps this is not surprising when one considers the unnecessarily complicated methods often used in treating such problems. It is the purpose of this paper to give the few simple statements necessary in connection with the exact determination of certain thermodynamic properties from the energy levels of matter as supplied by spectroscopy.

IUPAC Task Group 2000-013-1-100 & IUPAC Task Group 2003-4-1-100: Selected free radicals and critical intermediates: thermodynamic properties from theory and experiment

- Chairmen: T. Bérces⁺ and B. Ruscic
- Members: T. Bérces, J. E. Boggs,
 A. Burcat, A. G. Császár, J. Demaison,
 R. Janoschek, J. M. L. Martin,
 M. J. Rossi, B. Ruscic, J. F. Stanton, P. G. Szalay,
 P. R. Westmoreland, and F. Zabel
- http://www.iupac.org/projects/2003/2003-024-1-100.html

J. Phys. Chem. Ref. Data, Vol. 34, No. 2, 2005

Radical	Formula	$\begin{array}{c} \Delta_{\rm f} H^{\rm o}(298.15~{\rm K}) \\ ({\rm kJ~mol^{-1}}) \end{array}$	$\Delta_{\mathbf{f}} H^{\mathbf{o}}(0 \text{ K})$ (kJ mol ⁻¹)	H°(298.15 K) – H°(0 K) (kJ mol ⁻¹)	C° _p (298.15 K) (J K ⁻¹ mol ⁻¹)	S°(298.15 K) (J K ⁻¹ mol ⁻¹)
Methylidyne	СН (² П _{3/2})	595.8±0.6	592.5±0.6	8.625	29.175	183.037
Methylene (triplet)	$CH_2({}^{3}B_1)$	391.2±1.6	390.7±1.6	10.032	35.130	194.436
Methylene (singlet)	$CH_2({}^{1}A_1)$	428.8±1.6	428.3±1.6	9.940	33.781	189.220
Methyl	$CH_3(^2A_2'')$	146.7 ± 0.3	150.0 ± 0.3	10.366	38.417	194.008
Benzyl	$C_6H_5CH_2(^2B_1)$	208.0 ± 1.7	226.8±1.8	18.178	109.700	318.229
Hydroxymethyl	$CH_2OH(^2A[^2A''])$	-17.0 ± 0.7	-10.7 ± 0.7	11.781	47.401	244.170
Acetyl	$CH_3CO(^2A')$	-10.3 ± 1.8	-3.6 ± 1.8	12.385	50.785	267.448
Hydroxyl	OH $(^{2}\Pi_{3/2})$	37.3±0.3	37.1±0.3	8.813	29.886	183.737
Methoxyl	$CH_3O(^2E)$	21.0 ± 2.1	28.4 ± 2.1	10.719	42.541	234.278
Ethoxyl	$CH_3CH_2O(^2A'')$	-13.6 ± 4.0	-0.2 ± 4.0	14.235	66.321	277.642
Amidogen	$\mathrm{NH}_2(^2B_1)$	186.2±1.0	189.1±1.0	9.911	33.663	194.868

TABLE 5. Summary of the preferred thermochemical data

IUPAC

Number: 2004-035-1-100

Title: A database of water transitions from experiment and theory

Task Group Chairman: J. Tennyson (U.K.)) Members: P. Bernath (Canada), A. Campargue (France), M. R. Carleer (Belgium), A. G. Császár (Hungary), R. Gamache (Belgium), J. Hodges (U.S.A.), A. Jenouvrier (France), O. Naumenko (Russia), O. L. Polyansky (Germany), L. Rothman (U.S.A.), R. A. Toth (U.S.A.), A. C. VanDaele (Belgium), and N. F. Zobov (Russia)

http://www.iupac.org/projects/2003/2004-035-1-100.html

Journal of Quantitative Spectroscopy & Radiative Transfer 110 (2009) 573-596

IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part I—Energy levels and transition wavenumbers for $H_2^{17}O$ and $H_2^{18}O$

Jonathan Tennyson^{a,*}, Peter F. Bernath^b, Linda R. Brown^c, Alain Campargue^d, Michel R. Carleer^e, Attila G. Császár^f, Robert R. Gamache^g, Joseph T. Hodges^h, Alain Jenouvrierⁱ, Olga V. Naumenko^j, Oleg L. Polyansky^a, Laurence S. Rothman^k, Robert A. Toth^c, Ann Carine Vandaele¹, Nikolai F. Zobov^m, Ludovic Daumontⁱ, Alexander Z. Fazliev^j, Tibor Furtenbacher^f, Iouli E. Gordon^k, Semen N. Mikhailenko^j, Sergei V. Shirin^m

Central formula

 $Q(T) = \sum g_i (2J+1) \cdot e^{-c_2 E_i/T}$

Central quantities: energy levels

<u>Experiment</u>		<u>Theory</u>
	Accuracy	
in Spec: (10 ⁻⁴ -10 ⁻⁶ cm ⁻¹)	>>	10 ⁻¹ -10 ⁻³ cm ⁻¹
in Th: 1 kJ mol ⁻¹	~	1 kJ mol ⁻¹
	Completeness	
in Spec: ~1-10%	<<	~100%
in Th: ~100%	\sim	~100%
	Results	
Implicit		Explicit

Conclusion: use experiment and theory together and connect them with 'inversion tools' to achieve accuracy and completeness at the same time

Internal partition function

• Several definitions, one based on spectroscopic data ("direct sum"):

$$Q(T) = \sum_{i} g_{i} (2J+1) \cdot e^{-c_{2}E_{i}/T}$$

• Q(T)'s first and second moments:

$$Q'(T) = \sum_{i} g_{i}(2J+1) \cdot \frac{c_{2}E_{i}}{T} \cdot e^{-c_{2}E_{i}/T}$$
$$Q''(T) = \sum_{i} g_{i}(2J+1) \cdot \left(\frac{c_{2}E_{i}}{T}\right)^{2} \cdot e^{-c_{2}E_{i}/T}$$

• The isobaric specific heat capacity:

$$C_p(T) = R\left(\frac{Q''(T)}{Q(T)} - \left(\frac{Q'(T)}{Q(T)}\right)^2\right)$$

Internal partition function

• Several definitions, one based on spectroscopic data ("direct sum"):

$$Q(T) = \sum_{i} g_{i} (2J+1) \cdot e^{-c_{2}E_{i}/T}$$

• Q(T)'s first and second moments:

$$Q'(T) = \sum_{i} g_{i} (2J+1) \cdot \frac{c_{2}E_{i}}{T} \cdot e^{-c_{2}E_{i}/T}$$
$$Q''(T) = \sum_{i} g_{i} (2J+1) \cdot \left(\frac{c_{2}E_{i}}{T}\right)^{2} \cdot e^{-c_{2}E_{i}/T}$$

• The isobaric specific heat capacity:

$$C_p(T) = R\left(\frac{Q''(T)}{Q(T)} - \left(\frac{Q'(T)}{Q(T)}\right)^2\right)$$

accuracy goal in $C_p(T)$: 0.01% in the widest possible temperature range

RRHO vs. exact Q(T) (H₂¹⁶O)

Partition function of H₂¹⁶O

Exact partition function:

$$Q(T) = \sum_{i} g_{i} (2J+1) \cdot e^{-c_{2}E_{i}/T}$$

where the *E_i* values come from

- MARVEL (accuracy)
- *ab initio* computations (completeness)
- unbound states

T. Furtenbacher, T. Szidarovszky, J. Hrubý, A. A. Kyuberis, N. F. Zobov, O. L. Polyansky, J. Tennyson, A. G. Császár, *J. Phys. Chem. Ref. Data* **45**, 043104 (2016).

1. Each energy level has its own uncertainty

2. The "missing" energy levels, *ab initio* is not complete

3. The effect of unbound states (vide infra)

4. Uncertainty of physical constants (CODATA, ciaaw.org)

Revising a CODATA quantity: standard molar enthalpy increment of H₂¹⁶O

- H°(298.15 K) H°(0 K) (its other name is integrated heat capacity)
- Official value from CODATA compilation: 9.905 ± 0.005 kJmol⁻¹
- New, MARVEL-based value: 9.90404 ± 0.00001 kJmol⁻¹
- NB: (a) the new quantity is determined by energy levels below 5000 cm⁻¹; (b) insensitive to all reasonable changes in energy level uncertainties; and (c) even the first-principles computations provide basically the same value though with higher uncertainty

Partition functions and resonances

 $Q(T) = Q_{\rm B}(T) + Q_{\rm U}(T)$ $O_{\rm U}(T) = O_{\rm R}(T) + O_{\rm F}(T)$ $Q(T) = \sum e^{-\beta E_n} \leftrightarrow \int_0^\infty \rho(E) e^{-\beta E} dE$ $\rho_{\rm B}(E) = \sum_{n} \delta(E - E_n) \qquad \rho_{\rm R}(E) = \frac{1}{\pi} \sum_{r} \frac{\frac{1}{2}}{(E - E_r)^2 + \frac{\Gamma_r^2}{4}}$ $Q(T) = \int_0^\infty \rho(E) e^{-\beta E} dE = \sum g_n e^{-\beta E_n}$ $+\frac{1}{2\pi}\sum_{r}g_{r}\int_{D_{e}}^{\infty}\frac{\Gamma_{r}e^{-\beta E}}{\left(E-E_{r}\right)^{2}+\frac{\Gamma_{r}^{2}}{4}}dE$

Partition functions and resonances

$$\lim_{\gamma_r \to 0} \frac{\frac{\Gamma_r}{2\pi}}{(E - E_r)^2 + \frac{\Gamma_r^2}{4}} = \delta(E - E_r) \implies \frac{1}{2\pi} \int_{D_e}^{\infty} \frac{\Gamma_r e^{-\beta E}}{(E - E_r)^2 + \frac{\Gamma_r^2}{4}} dE \cong e^{-\beta E_r}$$

$$\rho_U(E) = \frac{1}{\pi} \frac{d\eta(E)}{dE} \qquad \rho(E) = \rho_B(E) + \rho_U(E)$$

$$Q(T) = \int_0^{\infty} \rho(E) e^{-\beta E} dE = \sum_n g_n e^{-\beta E_n}$$

$$+ \frac{g_{ns}}{\pi} \sum_J (2J + 1) \int_{D_e}^{\infty} \frac{d\eta_J(E)}{dE} e^{-\beta E} dE$$

 $\eta(E)$ is the scattering phase shift

Partition functions and resonances

blue diamond: NIST-JANAF orange square: bound only (638) green circle: bound + sharp res. green cross: B + sharp R + int. form
violet circle: B + R + simple sum
violet cross: B + R + integral form

 $D_{\rm e}$ =11,104.7(5) cm⁻¹ and $E_{\rm v}$ =19,000 cm⁻¹

Summary

• Weighted linear-least-squares approaches, which combine all the experimental and theoretical knowledge yield the best enthalpies of formation.

• When the experimental rovibronic energy level information is available, highly accurate ideal-gas thermochemical functions can be computed via the extended "direct summation" technique up to very high temperatures (6000 K).

• Unbound states may play a significant role in the accuracy of high-temperature thermochemical functions, especially C_p ; they can be considered via the "direct integration" technique.

Acknowledgments

- ***** Dr. Tibor Furtenbacher (MTA-ELTE, Hungary)
- * Dr. Tamás Szidarovszky, Ms. Irén Simkó (Hungary)
- Prof. Jonathan Tennyson Dr. Oleg Polyansky (U.K.)
- * Prof. Jan Hrubý (Czech Republic)
- * Dr. Nikolai Zobov (Russia)
- * Dr. Allan Harvey (U.S.)

Funding agencies: OTKA, NKFIH (Hungary), IUPAC, COST (CM1405, MOLIM)