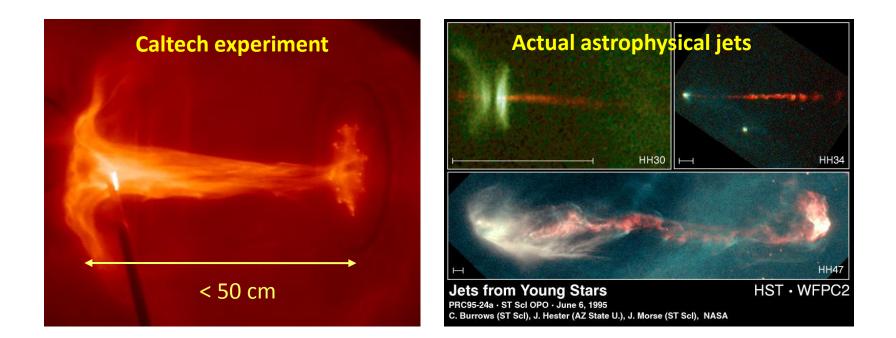
Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment

KB Chai

Korea Atomic Energy Research Institute/Caltech


Paul M. Bellan

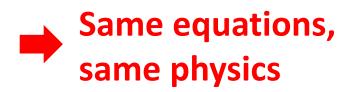
Caltech

Caltech spheromak jet experiment

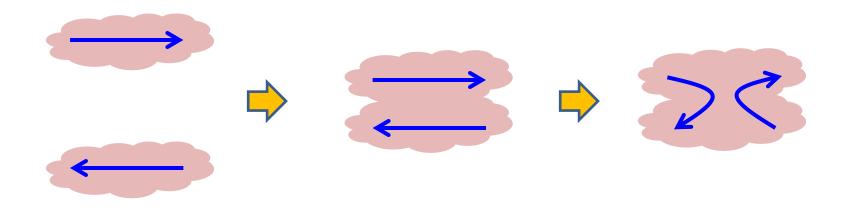
- Simulate non-relativistic astrophysical jets in the laboratory
 - Astrophysical jets: plasma outflows from heavy objects
 - Typical size: 200 2000 AU

Dimensionless nature of MHD

Dimensionless MHD equations


$$\frac{\partial \overline{\rho}}{\partial \tau} + \overline{\nabla} \cdot (\overline{\rho} \overline{\mathbf{U}}) = 0 \qquad : \text{ Continuity eq.}$$

$$\overline{\rho} \left(\frac{\partial}{\partial \tau} + \overline{\mathbf{U}} \cdot \overline{\nabla} \right) \overline{\mathbf{U}} = \overline{\mathbf{J}} \times \overline{\mathbf{B}} - \overline{\nabla} \mathbf{P} \qquad : \text{ Eq. of motion}$$

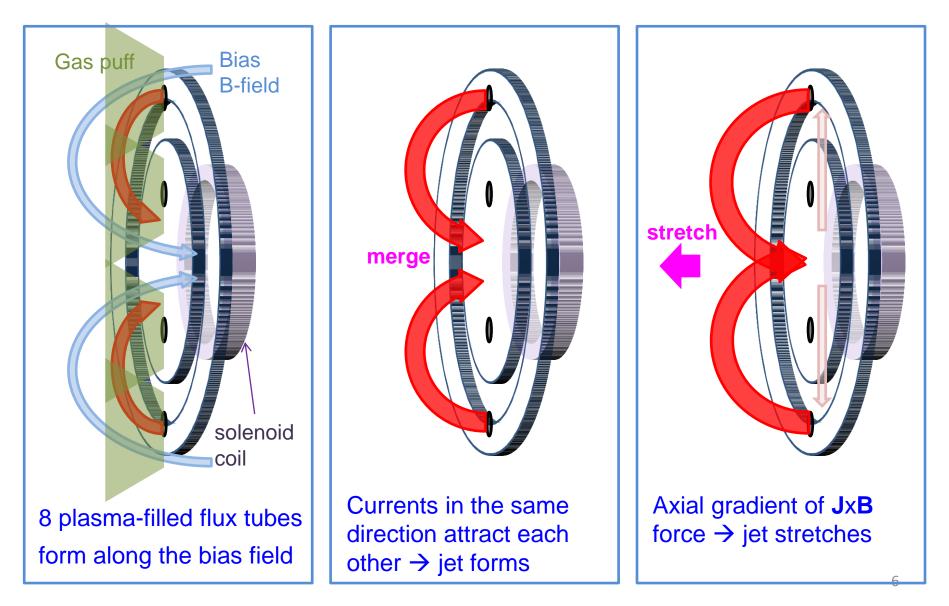

$$\overline{\nabla} \times \overline{\mathbf{B}} = \overline{\mathbf{J}} \qquad : \text{ Ampere's law}$$

$$\frac{\partial \overline{\mathbf{B}}}{\partial \tau} = \overline{\nabla} \times (\overline{\mathbf{U}} \times \overline{\mathbf{B}}) + \frac{1}{\delta} \overline{\nabla^2} \overline{\mathbf{B}} \qquad : \text{ Induction eq.}$$

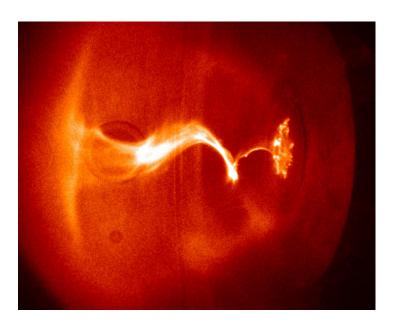
- Lundquist number: $S = \mu_0 L v_A / \eta$, Alfven speed: $v_A = B / (\rho \mu)^{1/2}$
 - Astrophysical jets: $S = 10^{10}-10^{20}$
 - Solar corona loops: $S \ge 10^{12}$
 - Tokamaks: $S = 10^8$
 - Caltech jet: S = 10-100

Magnetic reconnection

- Magnetic reconnection: two oppositely directed magnetic fields come together and reconnect to change their magnetic topology
 - Happens due to plasma resistivity
 - Converts magnetic energy into particle energy
 - Observed in solar corona, magnetosphere, tokamaks
- But details of magnetic reconnection still remain unclear

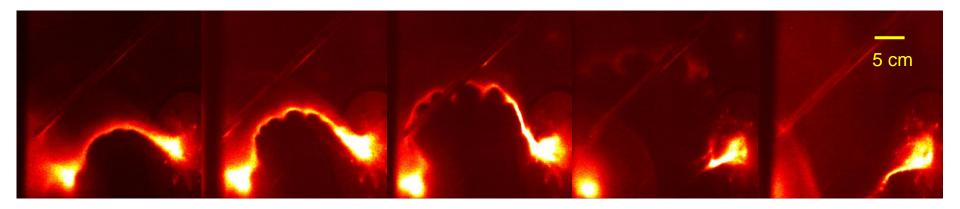

Details about the Caltech experiment

- Starts with (1) low beta (~ 0.1) \rightarrow JxB force is dominant
 - (2) large Lundquist number (>10) \rightarrow flux frozen-in particles
- Visualize multi-scale physics: single fluid, two-fluid (+kinetic scale)



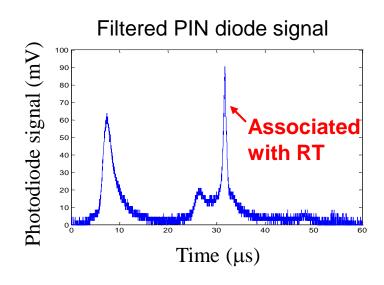
- Plasma characteristics
 - -Breakdown voltage: ~ few kV
 - -Plasma current: ~ 100 kA
 - –Plasma lifetime: < 50 μs
 - -Gas: H₂, N₂, Ne, Ar, Kr
 - \rightarrow Only Ar used in this work
 - * Plasma beta: $\beta = nk_BT/(B^2/2\mu_0)$
 - * Lundquist #: $S = \mu_0 L v_A / \eta$

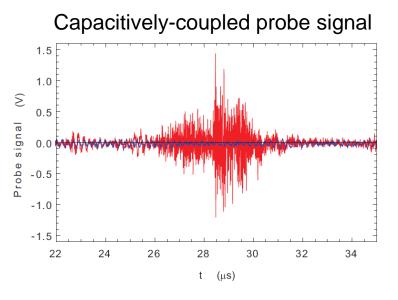
Formation of plasma jet


Ideal-MHD kink instability

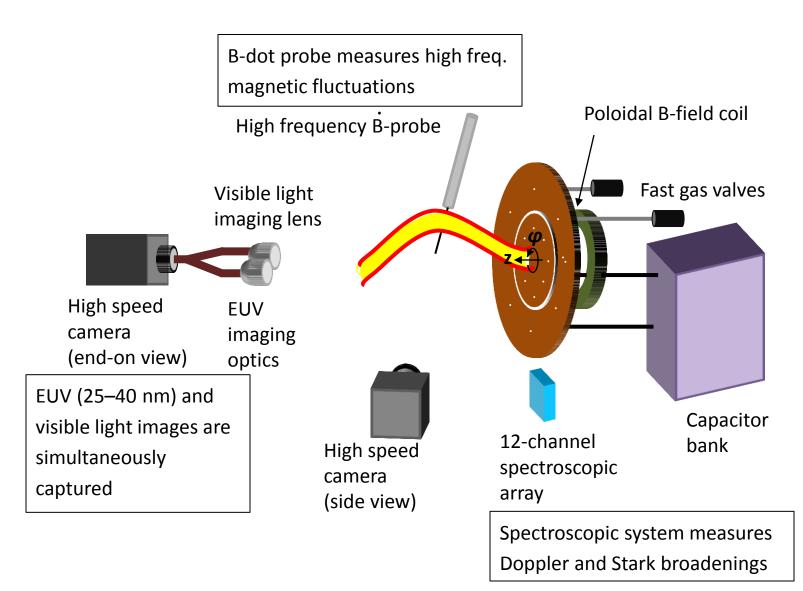
q : measure of pitch of helical magnetic field

- As jet length exceeds a critical value plasma becomes kink unstable
- Can be explained by Kruskal-Shafranov criterion: kink occurs when q < 1
 - $q = 2\pi r B_z / L B_\phi$
 - *L* increases \rightarrow *q* decreases

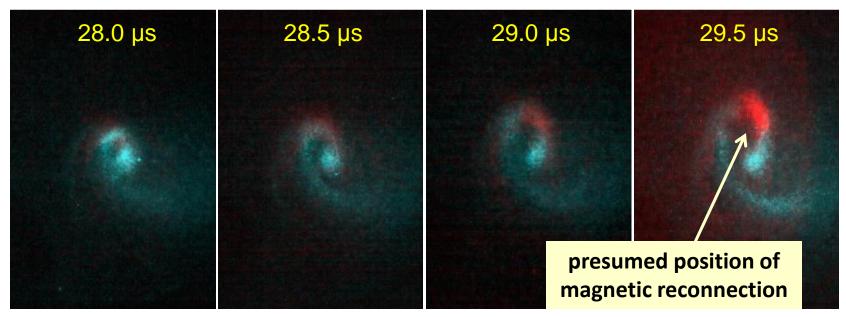

Rayleigh-Taylor (RT) instability



- Kink instability induces effective gravity in the -r direction
- RT instability occurs at interface between heavy plasma and light vacuum
- Finger-like structures: RT ripples
- Plasma diameter pinched by RT ripples to the ion skin depth scale
 → jet becomes in two-fluid regime & Hall physics becomes important
- Drastic change in magnetic topology after $RT \rightarrow magnetic reconnection$

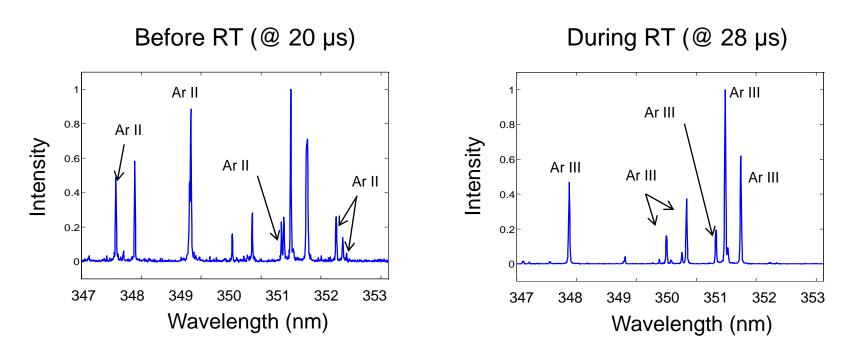

Mysterious EUV and RF bursts

- Observe transient EUV bursts & high frequency fluctuations when jet detaches from electrodes:
 - They are conjectured to be associated with magnetic reconnection
- Goal: study details of magnetic reconnection occurring in our jet by using comprehensive diagnostics

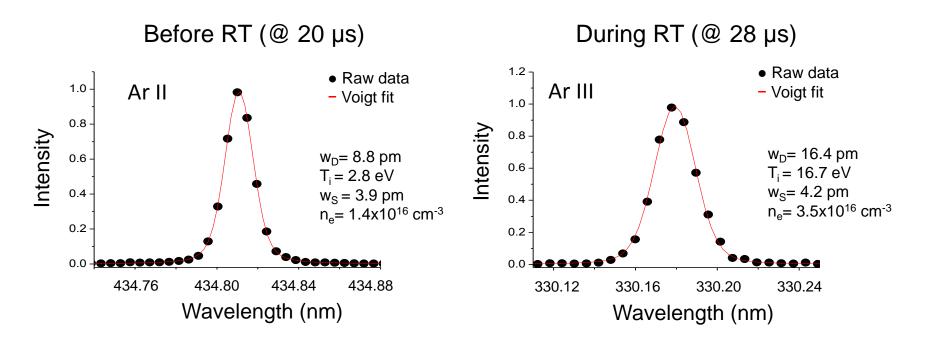

Sketch of diagnostics

EUV (25–40 nm) vs visible light

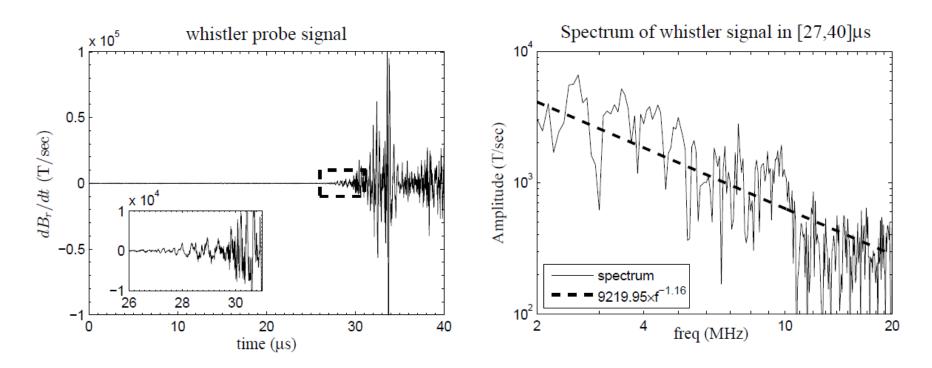
End-on view


red: EUV; blue: visible light

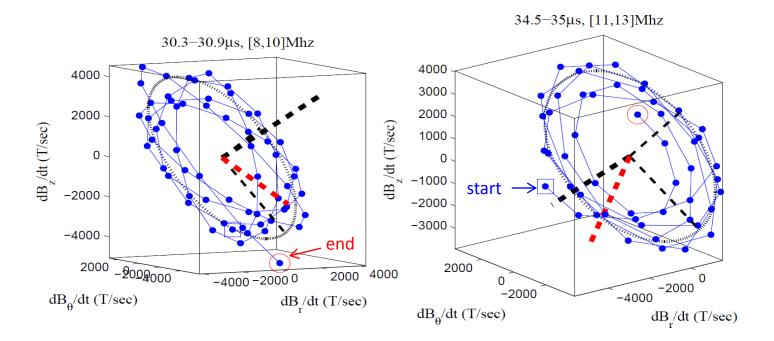
- As RT instability grows and reconnection occurs:
 - 25–40 nm EUV (red) becomes extremely bright in localized area
 - Visible light (blue) becomes dark where EUV gets bright
- Ar VI–VIII (Ar⁵⁺–Ar⁷⁺) lines exist in 25–40 nm
 - \rightarrow Plasma becomes higher ionization state after reconnection (electron heating)


K.-B. Chai, X. Zhai, and P. Bellan, Phys. Plasmas 23, 032122 (2016).

Plasma emission spectrum

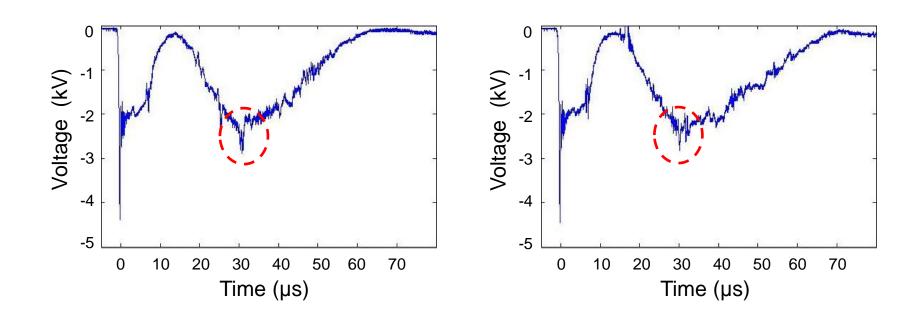

- As RT instability and reconnection occur:
 - Ar II (Ar⁺) lines disappear and Ar III (Ar²⁺) lines dominate over Ar II lines
 - Ar IV (Ar³⁺) lines are also observed
- ightarrow Indicates plasma become higher ionization state and electron heating

Doppler & Stark broadening


- Voigt function: convolution of Gaussian and Lorentzian
- Voigt fitting gives both Doppler (Gaussian) & Stark (Lorentzian) widths
- As RT and reconnection occur:
 - T_{i} : 2.6 ± 0.4 eV → 15.8 ± 2.3 eV
 - $n_{\rm e}$: (1.6 ± 0.3)×10¹⁶ cm⁻³ → (5.1 ± 2.1)×10¹⁶ cm⁻³

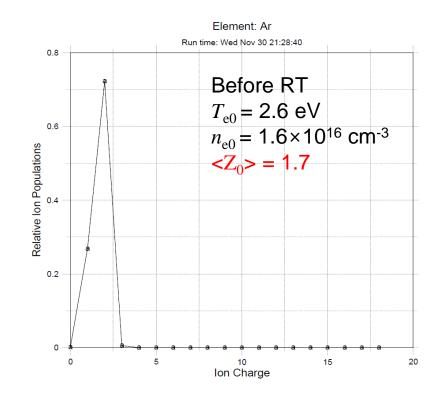
High freq. magnetic fluctuation

- Broadband (2-20 MHz) high frequency magnetic fluctuations observed when EUV burst appears
 - Ion cyclotron freq. < observed wave freq. < electron cyclotron freq.
 - − Have power-law dependence on freq. (~ f^{-1}) → but not turbulence


Whistler waves: Circular polarization

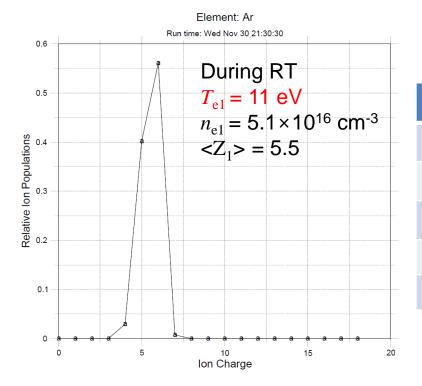
- Hodograms of magnetic vector show circular polarization & oblique propagation
- Whistler waves: circularly polarized B-field even when obliquely propagating*
 → Measured fluctuations are whistler waves
- Whistler wave: Hall-MHD phenomenon \rightarrow our reconnection is Hall-MHD reconnection

^{*} P. Bellan, Phys. Plasmas **20**, 082113 (2013).


Voltage spikes

- When EUV burst and whistler waves appear:
 - Reproducible, >500 V voltage spikes lasting ~1 μs appear
- → Results from magnetic reconnection that changes magnetic flux linking the electrode circuit

$T_{\rm e}$ estimation: FLYCHK


- Before reconnection, plasma jet is in LTE but it is not after reconnection* $\rightarrow T_{e0} = T_{i0} = 2.6 \text{ eV}$ but $T_{e1} \neq T_{i1}$ (= 15.8 eV)
- Using FLYCHK, the average ionization $\langle Z_0 \rangle = 1.7$ with $n_{e0} = 1.6 \times 10^{16}$ cm⁻³ $\rightarrow n_{i0} = 9.4 \times 10^{15}$ cm⁻³

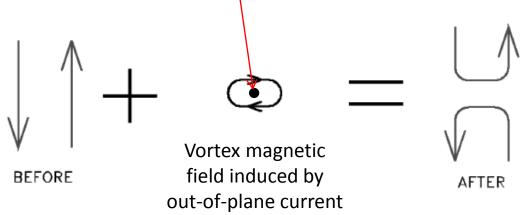
* G. Yun, Caltech PhD thesis (2008)

$T_{\rm e}$ estimation: FLYCHK

- Assuming no change in ion density after reconnection & using Stark broadening result $(n_{e1} = 3.2 n_{e0}) \rightarrow \langle Z_1 \rangle = 3.2 \times \langle Z_0 \rangle = 5.5$
- $< Z_1 > = 5.5$ can be obtained with $T_{e1} = 11 \text{ eV} \& n_{e1} = 5.1 \times 10^{16} \text{ cm}^{-3}$ (FLYCHK)

	Before reconnection	After reconnection
T _e	2.6 eV	11 eV
$T_{\rm i}$	2.6 eV	15.8 eV
n _e	1.6×10 ¹⁶ cm ⁻³	5.1×10 ¹⁶ cm ⁻³
n _i	$9.4 \times 10^{15} \text{cm}^{-3}$	$9.4 \times 10^{15} \text{cm}^{-3}$
<z></z>	1.7	5.5

Electron Ohmic heating


- Our estimation: $T_{\rm e}$ increased from 2.6 eV to 11 eV
- Observed electron heating rate:

 $3n_{\rm e}\Delta(k_{\rm B}T_{\rm e}) / 2\Delta t = 1.0 \times 10^{11} \,{\rm Wm^{-3}}$

• Ohmic heating rate inside current sheet with Spitzer resistivity $5.7 \times 10^9 < \eta J^2 < 1.1 \times 10^{13} \text{ Wm}^{-3}$

 \rightarrow Wide range is due to the uncertainty in estimate of J

→ Ohmic heating inside out-of-plane current is likely the cause of observed electron heating

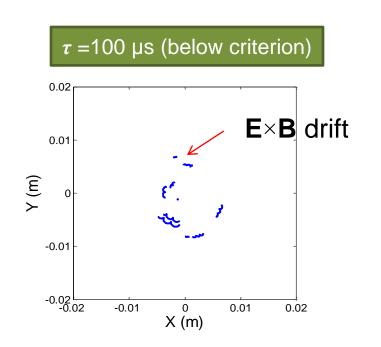
Ion stochastic heating

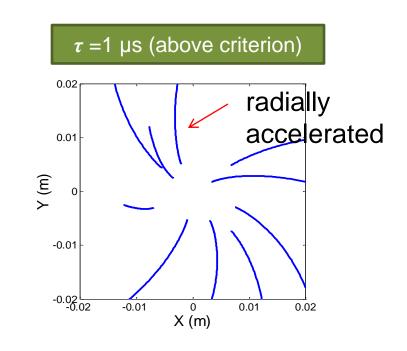
- Stochastic heating has been proposed
- z component of Generalized Ohm's law:

$$E_z + \hat{z} \cdot \mathbf{U_T} \times \mathbf{B_T} - \hat{z} \cdot \mathbf{J_T} \times \mathbf{B_T} / ne = \eta J_z$$

Outside r > ion skin depth, second and third terms are ignorable

$$-\partial \phi/\partial z - \partial A_z/\partial t \approx \eta J_z$$


- Ampere's law $\rightarrow B_{\theta} = \mu_0 J_z r/2, A_z = -\mu_0 J_z r^2/4$
- Transient out-of-plane current $J_z = J_{z0} e^{-t/\tau}$: τ is reconnection time scale $\phi = -\int (\partial A_\tau / \partial t + \eta J_\tau) dz$


$$E_r = -\partial \phi / \partial r = \mu_0 J_{z0} \mathrm{e}^{-t/\tau} r \mathrm{z}/2\tau$$

• If E_r is strong so that $m_i(q_iB^2)^{-1} \partial^2 \phi / \partial r^2 > 1$ is satisfied, ion trajectory becomes stochastic (guiding center approx. breaks down).

Ion stochastic heating

- Using nominal values of B = 0.6 T, z = 2 cm, J_{z0} = 10⁸ A/m², stochastic condition satisfied if τ < 3 µs.
- Observed $\tau = 1 \ \mu s \rightarrow$ our jet is in the stochastic regime.
- Trajectory of ions calculated by numerically integrating Lorentz Eq. with previously shown ${f E}$ and ${f B}$ confirms our argument.

Summary

- Observations:
 - □ Magnetic reconnection associated with Rayleigh-Taylor instability occurs
 - Jet diameter pinched to ion skin depth and Hall term becomes important
 - □ Strong, transient EUV burst (electron heating)
 - Doppler broadening in plasma emission lines (ion heating)
 - □ Whistler wave emissions (Hall-MHD physics)
 - □ Voltage spike (sudden change in magnetic topology)
- Discussion:
 - Electron heating is likely caused by Ohmic dissipation
 - □ Ion heating plausibly results from stochastic heating