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Caltech spheromak jet experiment

Caltech experiment Actual astrophysical jets

Jets from Young Stars HST - WFPC2

PRC95-24a - ST Scl OPO - June 6, 1995
C. Burrows (ST Scl), J. Hester (AZ State U.), J. Morse (ST Scl), NASA

* Simulate non-relativistic astrophysical jets in the laboratory
— Astrophysical jets: plasma outflows from heavy objects
— Typical size: 200 — 2000 AU



Dimensionless nature of MHD

Dimensionless MHD equations

VxB=1J
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. Continuity eq.

. Eqg. of motion
: Ampere’s law

. Induction eq.

« Lundquist number: S = ugLv,/5, Alfven speed: v,=B/(pu)'/?

Astrophysical jets: S = 1010-102°
Solar corona loops: S > 1012
Tokamaks: S = 108

Caltech jet: S=10-100

Same equations,
same physics



Magnetic reconnection
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* Magnetic reconnection: two oppositely directed magnetic fields come
together and reconnect to change their magnetic topology

— Happens due to plasma resistivity
— Converts magnetic energy into particle energy
— Observed in solar corona, magnetosphere, tokamaks

» But details of magnetic reconnection still remain unclear



Details about the Caltech experiment

e Starts with (1) low beta (~ 0.1) = JxB force is dominant
(2) large Lundquist number (>10) = flux frozen-in particles

* Visualize multi-scale physics: single fluid, two-fluid (+kinetic scale)

« Plasma characteristics
—Breakdown voltage: ~ few kV
—Plasma current: ~ 100 kA
—Plasma lifetime: < 50 pus
—Gas: H,, N,, Ne, Ar, Kr

- Only Ar used in this work

* Plasma beta: 8 = nkgT/(B?/2u,)
* Lundquist #: S = yyLvalny




Formation of plasma jet
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Ideal-MHD kink instability

g : measure of pitch of
helical magnetic field

* Asjet length exceeds a critical value plasma becomes kink unstable

* Can be explained by Kruskal-Shafranov criterion: kink occurs whenq < 1
— q=2xrB,/ LB,

— L increases = ( decreases

S. C. Hsu and P. M. Bellan, PRL 90, 215002 (2003).



Rayleigh-Taylor (RT) instability

Kink instability induces effective gravity in the —r direction

RT instability occurs at interface between heavy plasma and light vacuum
Finger-like structures: RT ripples

Plasma diameter pinched by RT ripples to the ion skin depth scale

— jet becomes in two-fluid regime & Hall physics becomes important

Drastic change in magnetic topology after RT = magnetic reconnection



Mysterious EUV and RF bursts

Observe transient EUV bursts & high frequency fluctuations when jet
detaches from electrodes:

— They are conjectured to be associated with magnetic reconnection
Goal: study details of magnetic reconnection occurring in our jet by using
comprehensive diagnostics
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Sketch of diagnostics

B-dot probe measures high freq.
magnetic fluctuations
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EUV (25-40 nm) vs visible light

End-on view red: EUV; blue: visible light

presumed position of
magnetic reconnection

e As RT instability grows and reconnection occurs:
— 25-40 nm EUV (red) becomes extremely bright in localized area
— Visible light (blue) becomes dark where EUV gets bright
* Ar VI-VIII (Ar>*—Ar7*) lines exist in 2540 nm
- Plasma becomes higher ionization state after reconnection (electron heating)

K.-B. Chai, X. Zhai, and P. Bellan, Phys. Plasmas 23, 032122 (2016).



Plasma emission spectrum
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* As RT instability and reconnection occur:
— Arll (Ar*) lines disappear and Ar Ill (Ar?*) lines dominate over Ar Il lines

— Ar |V (Ar3*) lines are also observed

- Indicates plasma become higher ionization state and electron heating



Intensity

Doppler & Stark broadening

Before RT (@ 20 ps) During RT (@ 28 ps)
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Voigt function: convolution of Gaussian and Lorentzian
Voigt fitting gives both Doppler (Gaussian) & Stark (Lorentzian) widths
As RT and reconnection occur:

— T:26+04eV->158+23eV
— n.: (1.6 £0.3)x10*® cm3 - (5.1 £ 2.1)x10** cm3
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Broadband (2-20 MHz) high frequency magnetic fluctuations observed
when EUV burst appears
— lon cyclotron freq. < observed wave freq. < electron cyclotron freq.

— Have power-law dependence on freq. (~ f 1) = but not turbulence



Whistler waves: Circular polarization
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Hodograms of magnetic vector show circular polarization & oblique propagation
Whistler waves: circularly polarized B-field even when obliquely propagating*

—> Measured fluctuations are whistler waves

Whistler wave: Hall-MHD phenomenon > our reconnection is Hall-MHD reconnection

* P, Bellan, Phys. Plasmas 20,082113 (2013).



Voltage spikes
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* When EUV burst and whistler waves appear:

— Reproducible, >500 V voltage spikes lasting ~1 us appear

- Results from magnetic reconnection that changes magnetic flux linking the

electrode circuit



T, estimation: FLYCHK

* Before reconnection, plasma jet is in LTE but it is not after reconnection™
2> Ty=Tip=2.6eVbutT, #T; (=15.8eV)

* Using FLYCHK, the average ionization <Z,> = 1.7 with n4=1.6x10® cm=3
2 Ny =9.4 x10»> cm?3

Element: Ar
Run time: Wed Nov 30 21:28:40
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* G. Yun, Caltech PhD thesis (2008)



T, estimation: FLYCHK

 Assuming no change in ion density after reconnection & using Stark
broadening result (Ny, = 3.2 Ng) 2 <Z;>=3.2x<Z;>=5.5
* <Z,;>=5.5 can be obtained with T,; =11 eV & n,; =5.1x10 cm3 (FLYCHK)

Element: Ar

Run time: Wed Nov 30 21:30:30
08
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§ o <Z,>=55 T, 2.6 eV 11 eV
5 T, 2.6 eV 15.8 eV
E N 1.6x10%6 cm 5.1x1016 cm3
. n; 9.4x10>cm3 9.4x10>cm3
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Electron Ohmic heating

e Ourestimation: T, increased from 2.6 eV to 11 eV

* Observed electron heating rate:

3n.A(kgT,) / 2At = 1.0x10% Wm'3

* Ohmic heating rate inside current sheet with Spitzer resistivity

5.7%x10° < 7J2 < 1.1x1013 Wm?3

- Wide range is due to the uncertainty in estimate of J

- Ohmic heating inside out-of-plane current is likely the cause of observed

electron heating
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lon stochastic heating

Stochastic heating has been proposed
z component of Generalized Ohm’s law:
E,+Z2-UxBy—2-JxB/ne=yJ,
— Qutside r > ion skin depth, second and third terms are ignorable
— 0¢/0z — OA,/ot = nJ,
Ampere’s law = By=u,J,1/2, A,= — uyJd,r?l4
Transient out-of-plane current J,=J,,67Y": 7 is reconnection time scale
=_[ (oA /ot +5d) dz
E, = —0¢l or = ugd,qe V" rz/2z
If E, is strong so that m(q;B?) 6%¢/0r? > 1 is satisfied, ion trajectory
becomes stochastic (guiding center approx. breaks down).



lon stochastic heating

— Using nominal values of B=0.6 T, Z=2 cm, J,,= 108 A/m?, stochastic
condition satisfied if 7< 3 ps.

— Observed 7=1 us =2 our jet is in the stochastic regime.

— Trajectory of ions calculated by numerically integrating Lorentz Eq. with
previously shown E and B confirms our argument.
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Summary

* Observations:
L Magnetic reconnection associated with Rayleigh-Taylor instability occurs
O Jet diameter pinched to ion skin depth and Hall term becomes important
O Strong, transient EUV burst (electron heating)
O Doppler broadening in plasma emission lines (ion heating)
O Whistler wave emissions (Hall-MHD physics)
O Voltage spike (sudden change in magnetic topology)

* Discussion:

O Electron heating is likely caused by Ohmic dissipation

O lon heating plausibly results from stochastic heating



