Atomic and molecular data at ITER - status and prospects

IAEA, Vienna, 19-21 December 2016

R Barnsley, M O'Mullane, S Lisgo, M DeBock, and the ITER team

- Overview of ITER status

- A&M data for plasma-material interactions
- -Plasma emission modelling for diagnostics

iten china eu india japan korea russia usa

ITER (www.iter.org)

- Superconducting Tokamak
- Single-null divertor
- Elongated, triangular plasma
- Additional heating from RF, ECH, and negative-ion neutral-beams

R (m)	6.2
a (m)	2
V _P (m ³)	850
I _P (MA)	15(17)
B _t (T)	5.3
δ,κ	1.85, 0.5
P _{aux} (MW)	40-90
Ρ _α (MW)	80+
Q (P _{fus} /P _{in})	10
Pfus(MW)	500

Worksite progress

400 kV switchyard

Preparatory works Magnet Conversion Power Contractors area

ITER IO Headquarters

Tokamak Complex Construction underway

Transformers

(October 2016)

Assembly Hall Being equipped

> Preparatory works Control building

Construction underway Chauffage RF

PF Coil winding facility

North Colorest

Construction underway

Being equipped Bâtiment servitudes

Cryostat workshop

Construction underway Cooling water system

Sit E.

Construction underway Cleaning facility

Tokamak Building

A cutaway of the Tokamak Building, which is the major element of the Tokamak Complex (which also includes the Diagnostics Building and the Tritium Building)

PF Coil winding facility

Too large to be transported by road, four of ITER's six ring-shaped magnets (the poloidal field coils, 8 to 24 m in diameter) will be assembled by the EU in this 12,000 m² facility. Fabrication of a dummy for PF Coil # 5 (17 m. in diameter) is ongoing.

PF5

PF6

ITER Operation Stages

The main elements relevant to the ITER plasma

Plasma "detachment" in the divertor: "gas target"

Need to radiate ~75% of the plasma energy entering the boundary in order to reduce the divertor heat loads: N, Ne, and/or Ar injected to increase radiation
AFTACHE/EREASMA

Low temperature plasma (< 5 eV) → complex plasma chemistry
high <u>neutral particle</u> densities, <u>molecular effects</u>, strong radiation

Material migration places new demands on PMI data

 High wall fluence results in extensive material erosion and redeposition

- Surface morphology and composition: material mixing, alloying, surface layers → effect on sputtering rates, ion / neutral particle reflection coefficients, dust / flake production, etc.
- Retention of tritium fuel in the wall big issue!

Boundary plasma transport codes need A/M/PMI data

Applications:

- Engineering design support: plasma-facing components and diagnostics
- Operational scenario planning, i.e. plasma pulse design
- Interpretation of experimental data, i.e. transport model validation
- Types of codes:
 - Fluid or fluid/kinetic (SOLPS, SONIC, EIRENE, etc.) \rightarrow Rate coefficients
 - Fully kinetic codes (BIT-1, BIT-N, etc.) \rightarrow <u>Differential cross-sections</u>
- Full range of P/M/PMI data is of interest: excitation, recombination, chargeexchange, electron cooling, momentum transfer, vibrational excitation, molecular break-up, sputtering, reflection, implantation, fuel retention, etc.
- Typically, the codes are generalized and can handle an arbitrary number of processes, including meta-stables, vibrational excitation of molecules (explicit), and complex molecule reaction chains (hydrocarbons)

Project Requirement on Diagnostics is for Measurements

Diagnostics are highly integrated

Uncertainty and benchmarking in A&M data, IAEA Vienna, 19-21 December 2016, R Barnsley

High priority in Dec 2016 – Cabling specifications

PBS	System	Range	Function	PA	Status
55E4	Divertor imp monitor	200 – 1000 nm	Impurity species and influx, divertor He density, ionisation front position, T_i .		PDR prep
55E2	Ha system	Visible region	ELMs, L/H mode indicator, $n_{\rm T}/n_{\rm D}$ and $n_{\rm H}/n_{\rm D}$ at edge and in divertor.	Yes	PDR prep
55E3	VUV spectr. – main	2.3 – 160 nm	Impurity species identification.	Yes	PDR held
55EG	VUV spectr. – divertor	15 – 40 nm	Divertor impurity influxes, particularly Tungsten		PDR held
55EH	VUV spectr. – edge	15 - 40 nm	Edge impurity profiles		PDR held
55ED	X-ray spectr. – survey	0.1 – 10 nm	Impurity species identification		PDR prep
55EI	X-ray spectr. – edge	0.4 – 0.6 nm	Impurity species identification, plasma rotation, T _i .		PDR prep
55E5	X-ray spectrcore	0.1 – 0.5 nm			PDR prep
55E7	Radial x-ray camera	1 – 200 keV	MHD, Impurity influxes, Te		PDR held
55E	Hard X-ray Monitor	100keV – 20MeV	Runaway electron detection		PDR Dec 2016
55EB	MSE	Visible region	q (r), internal magnetic structure	Yes	PDR prep
55E1	Core CXRS	Visible region	T _i (r), He ash density, impurity density profile, plasma rotation, alphas.		CDR held
55EC	Edge CXRS	Visible region			PDR prep
55EF	Pedestal CXRS	Visible region	View optimized for edge pedestal		CDR
55E8	NPA	0.01- 4 MeV	n_T/n_D and n_H/n_D at edge and core. Fast alphas.		PDR closed
55EA	LIF	Visible	Divertor neutrals		Pre- CDR held

Plasma emission modelling

- Impurity emission modelling is essential input to designs sets requirements for instrument:
 - Sensitivity
 - Spectral range and resolution
 - Field of view and spatial resolution
- Atomic data from ADAS Atomic Data and Analysis Structure (open.adas.ac.uk).
- Plasma emission modelling with SANCO impurity transport code
- Continuously refined and expanded
 - Wide range of plasma scenarios
 - Wide range of impurities
 - Impurity radiated power line and continuum
 - Input to all spectroscopy designs
 - Input to Bolometry design

Emission modelling for passive spectroscopy, SXR and bolometry

7.5MA H–mode

Ar Ly-α

W+46

Ar (0.05%), Fe (10⁻⁴), Kr (0.05%) and W (10⁻⁵)

s⁻¹Å⁻¹)

-OS emission (ph cm⁻²

10¹⁵

10¹⁶

W+64

2

3 Wavelength (Å

15MA optimal performance

Kr I v

- Variety of plasma scenarios modelled pre-• fusion and high performance phases.
- Whole plasma lifetime simulations.
- Mixture of intrinsic and introduced impurities. •
- Sensitivity analysis to transport. •
- Energy-resolved radiated power predictions to high energies, up to HXR region.
- Core and edge (divertor+SOL) contribution to ٠ total radiation assessed.
- New fundamental atomic data calculations for diagnostic lines and DR processes.

Uncertainty and benchmarking in A&M data, IAEA Vienna, 19-21 December 2016, R Barnsley

Emission modelling for passive spectroscopy, SXR and

Uncertainty and benchmarking in A&M data, IAEA Vienna, 19-21 December 2016, R Barnsley

r/a

Emission modelling for passive spectroscopy, SXR and bolometry

• Total radiated power (MW) for core and divertor/edge regions

· Simulation domains are similar but not completely self-consistent

		SANCO		SOLPS	
Elem.	conc.	core	SOL	outside LCFS	inside LCFS
Н	100.0	15.70	1.75	6.76	0.159
He	2.0	1.15	0.26	0.31	0.013
Be	2.0	8.57	2.07	3.64	0.144
Ne	0.1	2.68	0.08	0.68	0.25
Ar	0.1	18.73	3.31	2.16	1.58
W	0.001	8.58	0.0078	0.49	0.95

Emission modelling for passive spectroscopy, SXR and bolometry

- Emission modelling for ITER instrument design highlighted missing fundamental data.
- W44+ data calculated as result of survey X-ray instrument scoping (5.77A line identified as an important radator).
 - Bluteau et al, J Phys. B, 48 (2015) 195701
- Influence of new dielectronic recombination data on tungsten ionisation balance.
 - Preval et al, Phys. Rev. A, 93 (2016) 042703 + article in press
- All data produced for ITER diagnostic evaluation will be included in ADAS and OPEN-ADAS.

CXRS systems on ITER

	r/a < 0.6 – 0.7	r/a > 0.5	r/a > 0.85
Name	CXRS-core	CXRS-edge	CXRS-pedestal
Spatial resolution	a/30	a/30 – a/100	a/100

CXRS: Requests on atomic data modelling

- Accuracy CXRS measurements relies on:
 - Photon statistics
 - Absolute calibration
 - Atomic data cross sections

- Photon statistics optimized by design
- Absolute calibration simplified to relative calibration by ratio CXRS and Beam Emission Spectroscopy (BES)

$$\frac{n_Z}{n_e} = \frac{C_{BES}}{C_Z} \frac{\langle \sigma v \rangle_{BES}}{\langle \sigma v \rangle_Z} \frac{I_Z}{I_{BES}}$$

Errorbars on atomic data cross sections requested

MSE systems on ITER

- MSE views:
 - EPP3: off-axis, edge view on HNB2

 \Leftrightarrow 'always' edge q and high signal

AND on-axis, core view on DNB

- ⇔ 'always' core q, but low signal
- EPP1: on-axis, core view on HNB1

⇔ core q, high signal, but only available when HNB1 is on-axis

MSE: Requests on atomic data modelling

 MSE-LP polarization measurement is affected by Paschen-Back effect

Check of following requested:

- Coupling Stark-Effect and Paschen-Back effect
- Result on polarization state (Stokes vector)

• MSE-LR intensity ratio measurement is affected by the population distribution on the upper Stark levels

(Check of) modelling upper level population as function of density, field including accuracy requested

Summary

- Current need for edge modelling is improved recombination data for Ne
- The atomic data we need for most of the elements in ITER is known 'well enough' to design diagnostics and develop operating scenarios.
- ITER gave an impetuous to work on tungsten. Not all atomic data for this element are available at a quality/precision required yet but should be available well before ITER's first plasma.
- Beam-aided measurements rely on accuracy of atomic data
- Key long-term needs ~30 years
 - Expansion of data and improved accuracy
 - Management/curation of existing data
 - Continuity of expertise

The ITER construction site - December 2016

Back-up slides

CXRS: The principle

MSE: The principle

- Beam emission Stark split due to "motional" Lorentz electric field. Information about B in:
 - Polarization of the emission lines ⇔ MSE-LP
 - Line shift of the emission lines ⇔ MSE-LS

Constraints in equilibrium reconstruction that give the current/q-profile

