"a procedure to explore uncertainty and reliability in theoretical cross section data for electron and positron scattering"

Indian Institute of Technology (ISM) Dhanbad, India

- Theoretical methodology & Sample Results
 - Electron Scattering
 - Positron Scattering
- Uncertainty estimation
 - Benchmarking Data
 - Consistency check
 - Convergence check
 - Sensitivity to input parameters
 - Further plan

Theoretical methodology & Sample Results

- Electron Scattering
- Positron Scattering
- Uncertainty estimation
 - Benchmarking Data
 - Consistency check
 - Convergence check
 - Sensitivity to input parameters

Further plan

Theoretical methodology & Sample Results

Electron Scattering

Positron Scattering

Uncertainty estimation

- Benchmarking Data
- Consistency check
- Convergence check
- Sensitivity to input parameters

Further plan

Low Energy Formalism based on R-matrix

- Computes differential, momentum transfer and total cross section in the energy range 0.1eV to 10-15 eV
- The dissociative electron attachment process is qualitatively investigated

Spherical Complex Optical Potential (SCOP) Method

 Computes elastic ,inelastic and total cross sections for energies above IP up to 105 keV

 Complex Scattering Potential-ionization contribution (CSP-ic) Method

> Computes ionization cross section from inelastic cross section calculated through SCOP method

*Kaur et al., J Phys B: At. Mol. Opt. Phys. 49 (2016) 0225202.

- **Theoretical methodology & Sample Results**
 - Electron Scattering

Positron Scattering

- Uncertainty estimation
 - Benchmarking Data
 - Consistency check
 - Convergence check
 - Sensitivity to input parameters

Further plan

And Make A

Modified SCOP & CSP-ic Methods

 Computes ionization cross section from inelastic cross section calculated through SCOP method.

Difference between electron and positron interaction:

- Positrons are distinguishable from electrons, hence no exchange.
- The static interaction is repulsive, and
- The polarization interaction is attractive in nature.
- Positronium Formation and Positron annihilation
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

^{*} Singh et al., J. Phys. Chem. A 120 (2016) 5685.

And Make A

Modified SCOP & CSP-ic Methods

 Computes ionization cross section from inelastic cross section calculated through SCOP method.

Difference between electron and positron interaction:

- Positrons are distinguishable from electrons, hence no exchange.
- The static interaction is repulsive, and
- The polarization interaction is attractive in nature.
- Positronium Formation and Positron annihilation

^{*} Singh et al., J. Phys. Chem. A 120 (2016) 5685.

Antropy Allocation

Modified SCOP & CSP-ic Methods

 Computes ionization cross section from inelastic cross section calculated through SCOP method.

Difference between electron and positron interaction:

- No exchange.
- The static interaction is repulsive, and
- The polarization interaction is attractive in nature.

*** Positronium Formation**

- Positronium formation involves the capture of an incident positron by one of the target electrons, to form a "bound state".
- Positronium formation threshold is
 6.8 eV below from ionization threshold of the target.

Theoretical methodology & Sample Results

Electron Scattering

Positron Scattering

Uncertainty estimation

- Benchmarking Data
- Consistency check
- Convergence check
- Sensitivity to input parameters

Further plan

And the second s

Autor near second

Electron Scattering Cross Sections

- Differential elastic
- Total elastic
- Momentum transfer
- Electronic excitation
- Total ionization
- Total

Results: Elastic DCS

* Gupta et al. RSC Adv. 4 (2014) 9197; # Kaur et al. Phys. Rev. A 90 (2014) 012711

Fig 3: Q_{el} of (a)e-(CH₃)₂S^{*}, (b)e-(CH₃)₂SO^{*}, (c)e-(CH₃)₂O[#] (d) e-AsH₃⁺

* Kaur et al. Mol. Phys. 113 (2015) 3883, # Modak et al. Int. J. Mass Spectrom. 409 (2016) 1, +Kaur et al. Phys. Rev. A 90 (2014) 012711

* Verma et al. (2016), #Kaur et al. J Phys B: At. Mol. Opt. Phys. (2016)

Results: Electronic excitation

* Kaur et al. Phys. Rev. A 90 (2014) 012711, # Goswami et al. RSC Adv. 4 (2014) 30953

Results: Total ionization CS

* Verma et al. Phys. Plasmas 23 (2016) 093512

^{*} Kaur et al. Int. J. Mass. Spectrom, 386 (2015) 24.

Results: Total ionization CS

Fig. 12: Q_{ion} of (a) e-Pyridine, (b) e-Pyrimidine, (c) e-Urea (d) e-Formamide scattering*

^{*} Gupta et al. Mol. Phys. 128 (2014) 1201.

Present

1000

Present Qmol (SEP)

Makochekanwa et al

- Present Qmol (SE)

Present SCOP

Cho et al (elas)

Kennerlya et al

Ferch et al (elas)

Sakae et al (elas)

1000

Dababneh

Zecca et al

100

Energy(eV)

10 E. (eV)

100

Makochekanwa et al.

Fig. 13: Q_T of (a) *e-CF₂Cl₂, (b) #e-(C_nH_{2n-1})₂S; n=1-3, (c) e-C₂H₄ * (d) @ e-SF₆

*Verma et al. J. Elec. Spec. Rel. Phen. 210 (2016) 30 #Kaur et al. Mol. Phys. 113 (2015) 3883 @Singh et al. J. Chem. Phys. 145(2016) 034309.

- Theoretical methodology & Sample Results
 - Electron Scattering

Positron Scattering

- Uncertainty estimation
 - Benchmarking Data
 - Consistency check
 - Convergence check
 - Sensitivity to input parameters

Further plan

Positron Scattering Cross Sections

- Direct ionization
- Positronium formation
- Total ionization
- Total cross section

Results: Direct ionization CS

Fig 17: Q_{pos} of (a) e⁺-Ne, (b) e⁺-Ar, (c) e⁺-Kr (d) e⁺-Xe scattering .

Results: Total CS

* Singh et al., J. Phys. Chem. A 120 (2016) 5685.

- Need for cross section data
- Theoretical methodology & Sample Results
 - Electron Scattering
 - Positron Scattering
- Uncertainty estimation
 - Benchmarking Data
 - Consistency check
 - Convergence check
 - Sensitivity to input parameters
 - Further plan

Uncertainty: Benchmarking data

- Need for cross section data
- Theoretical methodology & Sample Results
 - Electron Scattering
 - Positron Scattering
- Uncertainty estimation
 - Benchmarking Data
 - Consistency check
 - Convergence check
 - Sensitivity to input parameters
 - Further plan

Uncertainty: Consistency check

Fig. 17: Deviation of theoretical results from the experiments (organometallic compounds)

Uncertainty: Consistency check

Uncertainty: Consistency check

- Need for cross section data
- Theoretical methodology & Sample Results
 - Electron Scattering
 - Positron Scattering
- Uncertainty estimation
 - Benchmarking Data
 - Consistency check
 - Convergence check
 - Sensitivity to input parameters

Further plan

Uncertainty: Convergence check

Uncertainty: Convergence check

- Theoretical methodology & Sample Results
 - Electron Scattering
 - Positron Scattering

Uncertainty estimation

- Benchmarking Data
- Consistency check
- Convergence check
- Sensitivity to input parameters

Further plan

Sensitivity to *Ionization Potential*

Sensitivity to Static Potential (V_COX Vs V_SALVAT)

Deviation: ~2.29 %

Sensitivity to *Exchange Potential* (V_HARA Vs V_GIANTURCO)

Deviation: ~13.2 %

Sensitivity to *Polarization Potential* (V_ZHANG Vs V_CONNELL&LANE)

Deviation: ~0 %

Sensitivity to Absorption Potential (V_STASZEWSKA Vs V_REID)

5 CF,H 0.70 0.75 0.80 4 3 $Q_{\underline{i}\underline{m}}(\bar{A}^2)$ 2 1 0 10.0 10 00 E (eV)

Uncertainty: Sensitivity to input parameters

- Theoretical methodology & Sample Results
 - Electron Scattering
 - Positron Scattering
- Uncertainty estimation
 - Benchmarking Data
 - Consistency check
 - Convergence check
 - Sensitivity to input parameters

Further plan

Estimate uncertainties associated with cross section data.

Develop a standard methodology???

- Need for cross section data
- Theoretical methodology & Sample Results
 - Electron Scattering
 - Positron Scattering
- Uncertainty estimation
 - Benchmarking Data
 - Consistency check
 - Convergence check
 - Sensitivity to input parameters
 - Further plan

* M.L. Dubernet, B. Antony, et al., J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 074003.

Thank you