Atomic Processes in Plasmas

A Qualitative Look

Yuri Ralchenko

National Institute of Standards and Technology

May 16 2023, APiP-2023 IAEA, Vienna, Austria

AFP/Joe Klamar

Question 1: We are building an x-ray laser to hit the asteroid. What is the energy of Ly_{α} in H-like Ge XXXII?

Question 2: What is its radiative transition probability?

Question 3: What is the excitation cross section/rate coefficient?

Question 4: How hot should the plasma be?

Question 5: What else?..

Energy of Ly_a (eV) in H-like Ge (Z_N =32): take a guess (10 seconds)

E < 1000 1000 < E < 5000 5000 < E < 9000 9000 < E < 12000 12000 < E

NIST ASD: 10,576 eV

Z_c-scaling of one-electron energies

Spectroscopic charge: **Z**_c = **ion charge + 1** (H I, Ar XV...)

This is the charge that is seen by the outermost (valence) electron

 $E = E_0 Z_c^2 + E_1 Z_c + E_2 + E_3 Z_c^{-1} + \dots$

Therefore, for high Z_c the energy structure looks more and more H-like!

Of course, relativistic effects slightly modify this dependence but the general trend remains valid

K I: 1s²2s²2p⁶3s²3p⁶4s W LVI: 1s²2s²2p⁶3s²3p⁶3d

• NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE NIST

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

Photons

NIS

Quantum electrodynamics: there are two types of photons

<u>Electric 2^j-pole</u>: Total angular momentum = J Parity = (-1)^j

Electric-dipole E1 Electric-quadrupole E2 Electric-octupole E3 <u>Magnetic 2^J-pole</u>: Total angular momentum = J Parity = (-1)^{J+1}

Magnetic-dipole M1 Magnetic-quadrupole M2 Magnetic-octupole M3 Positive parity Negative parity

Selection rulesj $P_j = P_i \bullet P_{ph}$ j $\overrightarrow{J}_j = \overrightarrow{J}_i + \overrightarrow{J}_{ph}$ i

E1 is always the strongest (allowed). Their *transition probabilities* **A strongly decrease** with the multipole order.

> NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

Yuri Ralchenko, Atomic Spectroscopy Group

Electric-dipole (E1) transitions

1. Basic matrix element

2. Line strength

3. Oscillator strength

 $\left\langle \Psi_{i} \middle| r \middle| \Psi_{j} \right\rangle$ $S_{ji} = \left| \left\langle \Psi_{i} || r || \Psi_{j} \right\rangle \right|^{2} = S_{ij}$ $f_{ji} = \frac{1}{3g_{i}} \frac{\Delta E}{Ry} S_{ji}$ dimensionless strong lines: 0.1-1 $A_{i} = A 34 \bullet 10^{7} \frac{g_{i}}{g_{i}} (\Delta E[eV])^{2} f$

4. Transition probability

 $A_{ij} = 4.34 \bullet 10^7 \frac{g_i}{g_j} (\Delta E[eV])^2 f_{ji} \qquad [s^{-1}]$

neutrals: ~10⁸ s⁻¹

NIST NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

Aurora borealis: forbidden transitions in O I

OI 2p⁴

Yuri Ralchenko, Atomic Spectroscopy Group

Z-scaling of forbidden transitions: example of Ne-like ions

Ground state: 1s²2s²2p⁶ ¹S₀

Forbidden transitions become more and more important with Z relative to allowed transitions

NL

Collisions

NIST

- Cross sections are *probabilities*
 - Classically: $\sigma(\Delta E, E) = \int P(\Delta E, E, \rho) \cdot 2\pi\rho d\rho$
- Typical values for atomic cross sections

-
$$a_0 = 5.29 \cdot 10^{-9} \text{ cm} \Rightarrow \pi a_0^2 \sim 10^{-16} \text{ cm}^2$$

• Collision strength Ω (dimensionless, on the order of unity):

$$\sigma_{ij}(E) = \pi a_0^2 \frac{Ky}{g_j E} \Omega_{ij}(E)$$

- Ratio of cross section to the de Broglie wavelength squared

V

ρ

Symmetric w/r to initial and final states

> NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

 Optically(dipole)-allowed 		Examples in He I:	
- $P \cdot P' = -1$ (different parity)			
$- \Delta l = 1$			
$-\Delta S = 0$		$1s^2 {}^1S \rightarrow 1s2p {}^1P$	
- σ(E→∞) ~ ln(E)/E		1s2p ³P → 1s4d ³D	
 Optically(dipole)-forbidden 			
$-\Delta S = 0$			
- σ(E→∞) ~ 1/E		1s2s ¹S → 1s3s ¹S	
 <u>Spin-forbidden</u> (EXCHANGE!) 		1s2s ³S → 1s4d ³D	
$-\Delta S \neq 0$			
- σ(E→∞) ~ 1/E³		1s² ¹S → 1s2p ³P	
	V P	$1s2p \ ^{3}P \rightarrow 1s4d \ ^{1}D$	

NIST NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

Van Regemorter-Seaton-Bethe formula

Optically-allowed excitations • Gaunt factor $\sigma_{ij}(E) = \pi a_0^2 \frac{8\pi}{\sqrt{3}} \left(\frac{Ry}{\Delta E_{ii}}\right)^2 \frac{g(X)}{X} f_{ij}$ $X = E / \Delta E_{ii}$ oscillator strength $X \to \infty: \ g(X) \approx \frac{\sqrt{3}}{2\pi} \ln(X) \qquad \sigma(E) \approx \frac{6.51 \cdot 10^{-14}}{\left(\Lambda E[eV]\right)^2} \frac{\ln(X)}{X} f_{ij} \quad \left[cm^{-2}\right]$ $\sigma_{ij}(E) \propto \frac{J}{\Delta E_{ii}^2}$

Z-Scaling of Excitations

Δn=0 • f~Z⁻¹, ΔE~Z, σ ~ Z⁻³, <vσ> ~ Z⁻²

∆n≠0

f~Z⁰, ΔE~Z², σ ~ Z⁻⁴, <vσ> ~ Z⁻³

If for neutrals $\sigma \sim 10^{-16} \text{ cm}^2$ and $v \sim 10^8 \text{ cm/s}$ (a.u.), then $\langle \sigma v \rangle \sim 10^{-8} \text{ cm}^3/\text{s}$

For H-like Ge XXXII ~ 3x10⁻¹³ cm³/s

Flexible Atomic Code (M.F. Gu)

Resonances in excitations

е

Intermediate AI states

Autoionization

- Examples of AI states
 - 1*s*2*s*², 2121`, 1*s*²2*p*n*l* (high n)
- Same old rule: before = after
- $A^{**} \rightarrow A^* + \varepsilon I$
 - **Exact**: $P_j = P_i$; $\Delta J = 0$
 - Approximate (LS coupling): $\Delta S = 0, \Delta L = 0$

P=+1

- $2p^2 {}^{1}S_0 \rightarrow 1s + \varepsilon s: good$
- $2p^2 {}^1D_2 \rightarrow 1s + \varepsilon d$: good

- $2p^2 \, {}^{3}P_{0,1,2} \rightarrow 1s + \epsilon p: parity/L violation!$ • BUT: $\Psi(2p^2 \, {}^{3}P_2) = \alpha \Psi(2p^2 \, {}^{3}P_2) + \beta \Psi(2p^2 \, {}^{1}D_2) + ...$ • and $\Psi(2p^2 \, {}^{3}P_0) = \alpha' \Psi(2p^2 \, {}^{3}P_0) + \beta' \Psi(2p^2 \, {}^{1}S_0) + ...$
 - YET: $A_a(2p^2 {}^{3}P_1) \approx 0$

A_a are typically on the order of 10¹³-10¹⁴ s⁻¹ and they (almost) do not depend on Z_c

NIST NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

NIST NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

W at 9 keV, 10¹⁴ cm⁻³

A. Burgess, ApJ 139, 776 (1964)

Ge (Z=32)

S (Z=16)

FLYCHK: https://nlte.nist.gov/FLY

Thermodynamic Equilibrium

- Principle of detailed balance
 - each direct process is balanced by the inverse
 - excitation \leftrightarrow deexcitation
 - ionization ↔ 3-body
 recombination
 - photoionization \leftrightarrow

NIST

- photorecombination
- autoionization ↔ dielectronic capture
- radiative decay (spontaneous+stimulated) ↔ photoexcitation

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

TE distributions

- Four "systems": photons, electrons, atoms and ions
- Same temperature $T_r = T_e = T_i$
- We know the equilibrium distributions for each of them
 - Photons: Planck
 - Electrons: Maxwell
 - Populations within atoms/ ions: Boltzmann
 - Populations between atoms/ions: Saha

But: photons are easily decoupled...no complete TE

Local Thermodynamic Equilibrium (high N_e, low T_e)

- LTE = Saha + Boltzmann + Maxwell
- *No atomic data* (only energies and statweights) are needed to calculate populations, A's needed for line intensities
- Griem's criterion for Boltzmann: *collisional rates* > 10*radiative rates

$$N_{e}[cm^{-3}] > 1.4 \times 10^{14} (\Delta E_{01}[eV])^{3} (T_{e}[eV])^{1/2} \propto \mathbb{Z}^{7}$$

H I (2 eV): 2×10¹⁷ cm⁻³ C V (80 eV): 2×10²² cm⁻³

Saha:

Coronal Equilibrium (high T_e, low N_e)

Does require a complete set of collisional cross sections and A values lonization balance does NOT depend on $N_e (I_z/T_e \sim 3)$

Next big: Apr 8, 2024

NIST NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

Conclusions

- Many characteristics of atomic processes in plasmas can be estimated using simple qualitative methods
- Use them!

