The Few-Body Problem in Simple Atomic Systems

Michael Schulz

Missouri S&T

University of Science & Technology Relevance of few-body problem to controlled fusion? <u>Controlled fusion:</u> Reliable rate coefficients for various processes in ion-atom collisions needed

Experimental data: tedious and costly to obtain, afflicted with experimental uncertainties

difficult to account for e.g. thermal energy distribution of ions and density effects in plasma

Alternative: theoretical calculations

Major challenge: Schrödinger equation not analytically solvable for more than 2 mutually interacting particles even when underlying forces are precisely known \Rightarrow <u>few-body problem</u>

- ⇒Theory has to resort to heavy numerical modelling efforts.
- Assumptions entering in models have to be tested by detailed experimental data

Kinematically complete experiments particularly important as they offer most sensitive test of theory

<u>Kinematically complete experiment on ionization</u> $P^{Z+} + T \rightarrow P^{Z+}(\Theta) + T^{+} + e^{-}$

Measure 2 momentum vectors, third determined by momentum conservation

Experimental Setup, 75 keV p + H₂, He

Complete projectile and recoil-ion momenta measured. Electron momentum from conservation laws \Rightarrow kinematically complete \Rightarrow FDCS

Three-Dimensional Fully Differential Single Ionization Data

Blue: Scattering plane definedRed: electron emission planeby p_o and p_f defined by p_o and p_e Quantities fixed: ϕ_p , q, and \mathbf{E}_e , spectra plotted as a fct. of ϕ_e and θ_e

Electrons ejected into scattering plane, $\theta_p = 0.1$ mrad

Electrons ejected into scattering plane, $\theta_p = 0.325$ mrad

 \Rightarrow Ball is in the theorists court now

Interference in atomic scattering well established. E.g.: two-center interference in projectile diffraction from diatomic molecules

<u>BUT</u>: transverse coherence length Δx must be large enough to coherently illuminate both centers simultaneously: $\Delta x > D$

 Δx given by geometry of collimating slit and DeBroglie wavelength:

 $\Delta \mathbf{x} = 1/2 \ \lambda \ \mathbf{L/a}$

Completely overlooked by theory for decades!

 $d\sigma_{\rm coh} = d\sigma_{\rm inc} I \implies {\rm ratio R} = d\sigma_{\rm coh}/d\sigma_{\rm inc}$ is interference term I

 $I = 1 + \alpha \cos \left(\mathbf{p}_{o} \sin \theta_{p} \mathbf{D} + \pi \right)$

what leads to this π -phase shift?

Shaofeng Zhang (IMP Lanzhou):

Internuclear Distance

<u>Problems:</u> a) coupling probability needs to be close to 1! Realistic?

b) when fragments reach coupling region projectile is long gone! how does it "know" about switch in symmetry? entanglement?

Collaborations

<u>I. IMP Lanzhou</u>, Xinwen Ma, Shaofeng Zhang, ... various projects

a) very fast collisions: discrepancies observed earlier

Due to unrealistic projectile coherence properties in theory? Need to repeat experiment. Facilities available at IMP b) Fully differential cross sections for highly charged ions
(e.g. Ne¹⁰⁺) at very small projectile energies (≈ 10 to 20 keV)

very non-perturbative regime ($\eta = Q_p / v_p \approx 30$ to 50) important regime for plasmas no fully differential data available!

II. Theory

- a) Don Madison at S&T, pioneer on 3DW model
- b) Marcelo Ciappina, Czech Republic, CDW-EIS model
- c) Raul Barrachina, Argentina, and Ladislau Nagy, Romania, projectile coherence effects

III. Desired future collaborations:

Theory groups using **non-perturbative and time-dependent** models to describe slow HCI collisions and coherence effects

funding??

Funding situation in US:

two agencies fund collision physics: NSF and DOE both under increasing financial pressure policy seems to be (at least at NSF) to reduce funding level before reducing number of funded projects

 \Rightarrow All AMO research activities at S&T currently still funded, but budget puts us in increasingly difficult situation.