Single and Multiple Ionizaton of Ions by Electron and Photon Impact

Stefan Schippers

Atom- und Molekülphysik I. Physikalisches Institut

28

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

Outline

- Electron-impact ionization of ions
 - Recent results from Giessen crossed-beams setup

Photoionization of ions

- ALS: Valence-shell ionization
- **PIPE@PETRA III: Inner-shell ionization**

Electron-Ion Crossed-Beams Method charge-changing collisions

pioneered by Dolder et al.

Proc. R. Soc. A 264 (1961) 367

other groups: Giessen, Louvain-La-Neuve, ORNL

reaction products

- keV-beams of high directionality
- high particle energies in lab frame

100% detection efficiency

detector based on secondary electron emission

K. Spruck et al., RSI 86 (2015) 023303

Giessen Crossed-Beams-Setup

<section-header>

E_{max} = 3.5 keV, I_{max} = 1 A Ebinger et al., NIMB **408** (2017) 317

animated crossed-beams method absolute cross sections for electron-impact ionization of ions typical systematic uncertainty <10%

A Fundamental Collision System: e⁻ + Li⁺

comparison between measurements and CCC calculations for a mixture of $Li^{+}(1s^{2} \ ^{1}S)$ and $Li^{+}(1s \ ^{2}s \ ^{3}S)$ ions

A. Borovik, Jr., A. Müller, S. Schippers, D. Fursa, I. Bray, JPB 42 (2009) 025203

Higher-Order Ionization Processes

electron-impact ionization of metastable N⁵⁺(1s 2s ³S) experiment and CCC calculations

EA: (nonresonant) Excitation followed by Autoionization

REDA: Resonant Excitation followed by Double Autoionization

A. Müller et al., PRA 90 (2014) 010701(R)

Cross-Section Data for Applications Ionization of Sn⁴⁺ - Sn¹³⁺ for EUV-Lithography

calculations using the LANL codes

Sn ions: A. Borovik, Jr. et al., JPB **46** (2013) 175201 Xe ions: A. Borovik, Jr. et al., JPB **48** (2015) 035203

Importance of Indirect Ionization

excitations of up to at least n=25 have to be considered

see, e.g., also: D.-H. Kwon & D. W. Savin, PRA **86** (2012) 022701; V. Jonauskas et al., PRA **91** (2015) 012715; A. Borovik Jr. et al., PRA **93** (2016) 012708.

Cross Sections for Multiple Ionization

Jacobi et al., JPB 38 (2005) 2015

The Giessen Electron-Ion Team

Benjamin Ebinger

Tobias Molkentin

Michel Döhring

Alfred Müller

Stefan Schippers

The Photon-Ion Merged-Beams Technique

recent review: Schippers, Kilcoyne, Phaneuf, Müller, Contemporary Physics 57 (2016) 215

low ion densities: ~ 10⁶ cm⁻³

long interaction region (~ 1 m) makes up for diluteness of ionic targets

Advanced Light Source

photon-ion end-station at beamline 10.0.1, Covington et al., PRA 66 (2002) 062710

Valence-Shell Photoionization of W⁴⁺(5d²)

ALS experiment

R-matrix theory for different initial levels

52-level calculation 730-level calculation

A. Müller, S. Schippers, J. Hellhund,A. L. D. Kilcoyne, R. A. Phaneuf,B. M. McLaughlin,

J Phys. B 50 (2017) 085007

www.uni-giessen.de/amp

Valence-Shell Photoionization of W⁴⁺(5d²)

Müller et al., J Phys. B 50 (2017) 085007

see also Müller et al., J Phys. B **48** (2015) 235203 for W¹⁺ and McLaughlin et al., J. Phys. B 49 (2016) 065201 for W²⁺ and W³⁺

Photons from PETRA III

aerial view of the DESY site in Hamburg

petra3.desy.de

the world's most brilliant 3rd generation synchrotron light source

PIPE* Photon-Ion Spectrometer at PETRA III

PPE* User Community & Collaborators

Current BMBF "Verbundforschung"

Justus-Liebig-Universität Gießen A. Borovik, T. Buhr, K. Holste, A. Müller, A. Perry-Sassmannshausen, S. Schippers

Universität Hamburg M. Martins, K. Mertens, S. Reinwardt Friedrich-Schiller Universität Jena R. Beerwerth, S. Stock, S. Fritzsche

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Johann-Wolfgang-Goethe Universität Frankfurt R. Dörner, T. Jahnke, M. Schöffler, M. Waitz

DESY FS-SCS DESY FS-FL **DESY FS-PE (P04)** S. Bari, K. Schubert S. Klumpp M. Hoesch, K. Bagschik, J. Seltmann, F. Scholz, F. Trinter **FU Berlin** Max-Planck-Institut für Kernphysik, Heidelberg HZB J. Viefhaus R. Flesch, E. Rühl, G. Ulrich A. Dorn, A. Wolf **Universität Kiel & DESY** PTB **ATOMKI**, Debrecen, Hungary M. Schnell L. Abrok, S. Ricz J. Ullrich

Columbia Astrophysics Laboratory, Columbia University, New York, USA D.W. Savin

Advanced Light Source, Berkeley A.L.D. Kilcoyne University of Nevada, Reno, USA R. A. Phaneuf

View Towards the Ion Source

Mass/Charge Selection of Ions

experiments with dilute ensembles of mass-selected small quantum systems

View of the Interaction Region

Determination of Absolute Cross Sections

measured count rate:
$$R = \sigma \begin{bmatrix} I_{ion} L \\ gev_{ion} \end{bmatrix} \phi_{ph} \begin{bmatrix} 1 \\ F \end{bmatrix}$$

cross number photon beam section of ions flux overlap

section

Slit position (mm)

www.uni-giessen.de/amp

First Results: 3d-Ionization of Xe Ions

experimental energy spread: 0.16 eV natural resonance width: ~0.6 eV

3d⁻¹ nf resonances

stepwise collapse of f-wave functions with increasing primary charge state

S. Schippers et al., J. Phys. B 47 (2014) 115602
S. Schippers et al., J. Phys. B 48 (2015) 144003
J. Phys. B Highlights 2014 and 2015

Inner-Shell Ionization of Astrophysically Relevant Ions

with 250 - 3000 eV photons

K-Shell Ionization of Ne+ Ions

PIPE has lead to a breakthrough in inner-shell ionization of ions

Accessible Energy Levels after 2p Excitation of Fe⁺(1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶ 4s)

Accessible Energy Levels after 2p Excitation of Fe⁺(1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶ 4s)

Fet Absorption Cross-Section

filling of L-shell holes by radiative transitions is negligible

Charge-State Fractions

full symbols: Beerwerth & Fritzsche (Jena), LSJ-coupling open symbols: Kaastra & Mewe, AAS (1993), LS-coupling

Mean Charge State of Product Ions

High-Resolution Measurement

comparison with Hartree-Fock and Dirac-Fock theory

theoretical curves shifted by -2.8 and 1.0 eV

PIPE* Photodetachment of Negative lons

1s 2s² 2p⁶ resonance

line width: 164 ± 24 meV

theory by R. Beerwerth and S. Fritzsche, Jena:

triple detachment requires double shake-up during KLL-Auger decay

S. Schippers et al., PRA **94** (2016) 041401(R) (editors' suggestion)

Multi-Electron Auger Processes

PI of C⁴⁺(1s 2s ³S) - 2s 2p ³P_J resonances

Small Molecular Ions

ionization of IH⁺ at the iodine 3d edge

- Electron and photon collisions with ions
- Cross sections for (multiple) ionization
- Role of many-electron processes
- Accurate spectroscopy information on multiply excited states
- Benchmarks for atomic structure and atomic collision theories

Thank you for your attention!

