

Quantum chemical calculations and MD simulations for Be

Institute of Ion Physics University of Innsbruck

Michael Probst

Michael Stefan Alexander Ivan Andreas Györoek Huber Kaiser Sukuba Mauracher

Be-CRP IAEA VIE June 15-20 2016

1 Electron impact ionization cross sections (EICSs)

Electron impact ionization cross sections of beryllium-tungsten clusters

Ivan Sukuba, Alexander Kaiser, Stefan E. Huber, Jan Urban, Michael Probst **Eur. Phys. J. D (2016) 70: 11**. Last meeting: Beryllium hydride cross sections.

We wanted to modernize the EICS calculations a little bit:

- use at least 2 independent methods (BEB and DM)
- work to incorporate a third method (optical potential)
- use good global geometry optimization algorithms
- extend the EICS to cover excited states / ionic states

Example: BeW results.

DM:

•
$$\sigma_{DM}(u) = \sum_{n,l} g_{nl} \pi r_{nl}^2 \xi_{nl} b_{nl}^{(q)}(u) [\ln(c_{nl}u)/u]$$

$$b_{nl}^{(q)} = \frac{A_1 - A_2}{1 + (u/A_3)^p} + A_2$$

BEB:

•
$$\sigma_{BEB}(t) = \frac{S}{t + (u+1)/n} \left[\frac{\ln(t)}{2} \left(1 - \frac{1}{t^2} \right) + 1 - \frac{1}{t} - \frac{\ln(t)}{t+1} \right],$$
$$t = T/B, \ u = U/B, \ S = 4\pi a_0^2 N R^2 / B^2$$

From QC calculations

- Be_nW cluster, n=1-12, all singlet states
- Optimization by simulated annealing (Born-Oppenheimer molecular dynamics with TURBOMOLE)

Be_nW cluster, n=1-3

Cross sections for S and T spins:

Cross sections:

• In Be_8W , different geometries are close in energy. Their cross sections are similar to each other:

2 MD of Be-D sputtering

(Ivan Sukuba et al.)

hcp - Be surface (0001), 32x32x45(60)A³ ~4700 atoms for 25 and 50 eV impact energies and ~6300 atoms for 70 and 80 eV energies. 9000 impacts .

1) Be sputtering. 9000 non-cumulative events Impact energies: 25, 50, 70, 80 eV

1) BeD sputtering. 9000 non-cumulative events Impact energies: 25, 50, 70, 80 eV

1) D reflected. 9000 non-cumulative events Impact energies: 25, 50, 70, 80 eV

For D, Be and BeD leaving the surface there is little, if any effect of the surface temperature T, at least if T is in the range 420 to 720K.

Compare: 1eV corresponds to 11000K Be boils at 3240K (cohesive energy)

Experiments show a definite T-dependence Mechanism of T influencing sputtering ?

Further MD-related works:

 surface dependence trajectory analysis

3 Stability of BeH molecules

Reaction Thermodynamics Be \leftrightarrow BeH \leftrightarrow BeH₂ and other equilibria

Alexander Kaiser Ivan Sukuba Stefan Huber Michael Probst

Not yet published

Calculations:

- ∆G_f und ∆H_f values (free formation energies and - enthalpies) for various neutral, cationic and anionic Be_xH_y – species.
- $\Delta\Delta G$ values (free energies of *reactions*) and equilibrium constants at different temperatures for the various interconversion reactions of neutral and ionic Be_xH_y – species have been calculated.
- This gives the equilibrium concentrations of these molecules
- The electron-impact cross sections of these molecules have also been calculated.

What we aimed for:

Stability analysis

Enthalpy and Free energy of reactions

Transition states (in progress)

Rate constants for various BeD₂ and BeD₃ channels

Ab initio methods: Accuracy of the G4 method of theory is very good! also CCSD, QCISD

Basic formulas:

 $\Delta G = \Delta G^0 + RT \ln(Q_r) = RT \ln(Q_r/K_{eq})$

Q_r ... reaction quotient - initial concentrations

Sputtering yields from MD simulations and experiments (not used yet, but data available)

 $ln(Q_r/K_{eq})$ determines the direction of the reaction

Eyring equation for rate constants $k(T) = k_BT / h \exp(-\Delta G^{\circ}/RT)$

All values are calculated

Motivation

Discrepancies between MD results and experiment at high temperatures (500 K)

Data for ERO (need for data in general)

Explanation of reactivity of BeD₂ and BeD₃

BeD₁₋₃ molecules

Few experimental data

If, only for BeD (spectroscopic data)

Theoretical data only for BeD

Input to $\triangle G$ and k – calculations QC data components:

BeH_298.15.log

8.31E-03 kJ/(MolK)

Eelec	-15.2667771	3.17E-06 Hartree/MolK
ZPE	0.003367	
TCEnergy	0.005733	ZPE+Evib+Erot+Etrans
TCEnthalpy	0.006677	0.00668ZPE+Evib+Erot+Etrans+RT
TCGibbs	-0.01407	
Eelec+ZPE	-15.26341	
Eelec+Thermal Energy	-15.261044	-15.26104 Eelec+TCEnergy
Eelec+thermal Enthalpy	-15.2601	-15.26010 Eelec+TCEnthalpy
Eelec+thermal free energy	-15.280847	-15.28085 Eelec+TCGibbs

The reaction network. Free energies as function of temperature

G4 reaction free energies ΔG_r^0 (Ochterski approach from gaussian calculations)

	1	2	3	4	5	6	7	8	9	10	11	12	13
К	kJ/Mol	kJ/Mol	kJ/Mol	kJ/Mol	kJ/Mol	kJ/Mol	kJ/Mol	kJ/Mol	kJ/Mol	kJ/Mol	kJ/Mol	kJ/Mol	kJ/Mol
	∆G ⁰	∆G ⁰	∆G ⁰	∆G ⁰	∆G ⁰	ΔG ⁰	∆G ⁰	∆G ⁰	ΔG ⁰	ΔG ⁰	ΔG ⁰	ΔG ⁰	ΔG ⁰
т	BeD \rightarrow	$BeD_2 \rightarrow$	$BeD_2 \rightarrow$	$BeD_2 \rightarrow$	BeD⁻→	BeD⁻→	$BeD_2^- \rightarrow$	BeD⁻ →	$BeD_2^- \rightarrow$				
	Be+D	Be+D ₂	BeD+D	Be+2D	Be + D ⁻	Be⁻ + D	Be + D ₂ -	$Be^{-} + D_{2}$	Be + D + D	Be ⁻ +2 D	BeD ⁻ + D	Be + D + e ⁻	Be + D ₂ + e-
0.00	207.58	159.43	393.56	601.14	237.98	282.14	479.74	154.44	551.99	596.15	314.01	273.51	145.81
100.00	202.52	148.48	380.10	582.61	233.07	276.08	472.77	148.79	539.92	582.93	306.84	268.03	140.74
200.00	195.72	135.26	364.37	560.09	226.44	268.30	462.89	140.30	523.27	565.13	296.83	260.82	132.82
298.15	188.42	121.56	348.20	536.62	219.30	260.03	452.10	131.03	505.37	546.10	286.06	253.12	124.12
300.00	188.28	121.29	347.89	536.17	219.17	259.87	451.89	130.85	505.02	545.73	285.85	252.97	123.95
400.00	180.43	106.93	331.01	511.43	211.52	251.08	440.19	120.89	485.83	525.39	274.31	244.75	114.56
500.00	172.29	92.36	313.88	486.16	203.63	242.03	428.02	110.62	466.02	504.42	262.39	236.28	104.87
600.00	163.94	77.66	296.59	460.52	195.57	232.82	415.53	100.16	445.78	483.03	250.21	227.65	94.99
700.00	155.43	62.89	279.18	434.61	187.38	223.48	402.79	89.59	425.20	461.30	237.82	218.88	84.99
800.00	146.80	48.10	261.69	408.50	179.10	214.05	389.88	78.94	404.39	439.34	225.29	210.03	74.92
900.00	138.08	33.29	244.15	382.23	170.74	204.54	376.83	68.23	383.38	417.17	212.63	201.09	64.79
1000.00	129.28	18.48	226.56	355.83	162.32	194.96	363.66	57.49	362.20	394.84	199.88	192.09	54.62

product product product

anion anion anion

unstable unstable unstable

The reaction network. Free energies as function of temperature

able 11 continued A calculations of reaction free energies										
aicuiati	25	5 26	Eigles 2	7 2	8 2	9	30	31	32 33	
K k.	J/Mol	kJ/Mol	kJ/Mol	kJ/Mol	kJ/Mol	kJ/Mol	kJ/Mol	kJ/Mol	kJ/Mol	
Δ	G _r ⁰	ΔG ⁰	ΔG ⁰	ΔG ⁰	ΔG ⁰	ΔG ⁰	ΔG ⁰	ΔG ⁰	ΔG ⁰	
т	$BeD_3 \rightarrow$	$BeD_3 \rightarrow$	$BeD_{3}^{+} \rightarrow$	$BeD_3^+ \rightarrow$	$BeD_3^+ \rightarrow$	$BeD_3^+ \rightarrow$	$BeD_3^- \rightarrow$	$BeD_3^- \rightarrow$	$BeD_3^- \rightarrow$	
	BeD ₂ +D	BeD +D ₂	BeD ⁺ +D ₂	$BeD + D_2^+$	BeD ₂ ⁺ +D	BeD ₂ + D ⁺	BeD ₃ + e-	BeD ₂ ⁻ + D	$BeD^{-} + D_{2}$	
0	33.0235	-15.1281	93.2945	779.4136	462.3006	648.9368	284.7013	331.3433	203.6390	
100	33.2808	-20.7546	87.4948	771.7892	454.6577	648.9920	284.4440	325.4648	198.1753	
200	30.8102	-29.6524	78.8437	761.3161	444.4393	646.7393	284.0475	317.2969	189.2985	
298.15	27.6964	-39.1698	69.8409	750.5174	433.7640	644.1085	283.4358	308.5671	179.5658	
300	27.6360	-39.3510	69.6676	750.3100	433.5592	644.0560	283.4200	308.3990	179.3767	
400	24.1940	-49.2990	60.3550	739.1542	422.3772	641.2152	282.6455	299.2098	169.0218	
500	20.6443	-59.2812	51.0476	727.9591	411.0141	638.2983	281.7975	289.9313	158.5224	
600	17.0684	-69.2082	41.7874	716.7640	399.5275	635.3420	280.9127	280.6501	147.9942	
700	13.4951	-79.0407	32.5956	705.5767	387.9438	632.3568	280.0069	271.4058	137.5132	
800	9.9401	-88.7655	23.4746	694.4052	376.2918	629.3480	279.0958	262.2191	127.1083	
900	6.4115	-98.3775	14.4324	683.2600	364.5874	626.3286	278.1769	253.0929	116.7875	
1000	2.9064	-107.89000	5.4610	672.1357	352.8435	623.2988	277.2580	244.0270	106.5559	
								product anion		

Enthalpy and as function of temperature (kJ/mol)

Free energy

At low T BeD₂ is much favoured over Be and D₂ At 1000K both BeD₂ and Be+D₂ are equally probable

4 DFT of Be₂W and Be₁₂W surfaces

Surface binding energies of beryllium/tungsten alloys Gyoeroek, Michael; Kaiser, Alexander; Sukuba, Ivan; Urban, Jan; Hermansson, Kersti; Probst, Michael Journal of Nuclear Materials (2016), 472, 76-81.

o VASP ...

- Density functional theory
- Widely used in materials science
- Plane waves, LAPWs as basis sets
- PBE functional
- Periodic systems

2. Methods

Surface Model

- periodic boundary conditions
- o vacuum depth 8 [Å]
- o orientation (001)

2. Methods

Surface Binding Energy & Cohesive Energy

$$E_{SBE} = E_{atom} + E_{SV} - E_{S}$$
$$E_{coh} = \frac{E_{bulk} - \sum_{i} n_i E_{atom}(i)}{\sum_{i} n_i}$$

E_{atom} - single atom energy

 E_{SV} - total energy of the surface slab with a single surface vacancy

- E_s total energy of the slab with the clean surface
- E_{bulk} total bulk energy
- n_i number of atoms of each species

Surface Binding Energies: Pure Metals

structure	vacancy	SBE [eV]		no. of neighbor s		distance [Å] (number of neighbors)		
		DFT	ABOP	W	Be	W-W	Be-Be	
Be hcp (0001)	Ве	5.128	4.26	-	9		2.211 (3) 2.277 (6)	
W bcc (001)	W	8.805	9.07	9	-	2.749 (4) 3.174 (5)		

Alloys: Geometric Arrangement

Slab A ≫ Slab B ≫

-W-Bc Be_2W

Results **Surface Binding Energies** SBE [eV] no. of distances [Å] (number of vacanc neigh neighbors in parentheses) У -bors Be₁₂W W Be-W DFT Be Be-Be (001)Surface 2.528 Be (a) 4.26 1 8 2.144 (1), 2.209 (2) Α (1) 2.333 (1), 2.340 (2) 2.593 (2) 4.12 Surface Be (y) 7 2.595 2.104 (2), 2.151 (2) 1 Α (1) 2.333 (1), 2.340 (2) W (β) 12 2.528 (4) Surface 6.81 0 Α 2.596 (4) 2.755 (4) Surface 2.104 (3), 2.209 (2) Be (δ) 4.33 5 1 2.755 (1) В 33

Comparison DFT vs. ABOP -Be₂W

Comparison DFT & ABOP – Be₁₂W

Cohesive energy correlations

Conclusions:

Increasing tungsten content stabilizes the whole material (against sputtering).
Preferential sputtering of Be (only).
One case where there is a large discrepancy with BOP

Thank you !