start
Quantum chemical calculations and MD simulations for Be

Institute of Ion Physics University of Innsbruck

Michael Probst Michael Györoek Stefan Huber Alexander Kaiser Ivan Sukuba Andreas Mauracher

Be-CRP IAEA VIE June 15-20 2016
QC & MD

Topic
- Surface Stability (Energetics)
- Sputtering Dynamics
- Near-surface reaction Equilibria
- Electron-Impact Cross Section

Methods
- DFT: surface stability, cohesive energy
- MD: Yields, dependence on E, T ...

Properties
- QC extrapolation methods
- \(\Delta G \): k (rate constants)
- semi-empirical methods
- DM, BEB: new methods
1 Electron impact ionization cross sections (EICSs)

Electron impact ionization cross sections of beryllium-tungsten clusters
Ivan Sukuba, Alexander Kaiser, Stefan E. Huber, Jan Urban, Michael Probst
Last meeting: Beryllium hydride cross sections.

We wanted to modernize the EICS calculations a little bit:

• use at least 2 independent methods (BEB and DM)
• work to incorporate a third method (optical potential)
• use good global geometry optimization algorithms
• extend the EICS to cover excited states / ionic states

Example: BeW results.
DM:

\[\sigma_{DM}(u) = \sum_{n,l} g_{nl} \pi r_{nl}^2 \xi_{nl} b_{nl}^{(q)}(u)[\ln(c_{nl} u)/u] \]

\[b_{nl}^{(q)} = \frac{A_1 - A_2}{1 + (u/A_3)^p} + A_2 \]

BEB:

\[\sigma_{BEB}(t) = \frac{s}{t+(u+1)/n} \left[\ln(t) \left(1 - \frac{1}{t^2} \right) + 1 - \frac{1}{t} - \frac{\ln(t)}{t+1} \right], \]

\[t = T/B, \ u = U/B, \ S = 4\pi a_0^2NR^2/B^2 \]

From QC calculations
• Be\textsubscript{n}W cluster, n=1-12, all singlet states

• Optimization by simulated annealing (Born-Oppenheimer molecular dynamics with TURBOMOLE)
Be$_n$W cluster, $n=1-3$

Cross sections for S and T spins:
Be_nW cluster, $n=1-12$

Cross sections:
In Be$_8$W, different geometries are close in energy. Their cross sections are similar to each other:
2 MD of Be-D sputtering

(Ivan Sukuba et al.)
Sputtering yield as a function of the temperature of a Be surface

hcp - Be surface (0001), 32x32x45(60)Å³
~4700 atoms for 25 and 50 eV impact energies and
~6300 atoms for 70 and 80 eV energies.
9000 impacts.
Sputtering yield as a function of the temperature of a Be surface

1) Be sputtering. 9000 non-cumulative events
Impact energies: 25, 50, 70, 80 eV
Sputtering yield as a function of the temperature of a Be surface

1) BeD sputtering. 9000 non-cumulative events
Impact energies: 25, 50, 70, 80 eV
Sputtering yield as a function of the temperature of a Be surface

1) D reflected. 9000 non-cumulative events
Impact energies: 25, 50, 70, 80 eV
Sputtering yield as a function of the temperature of a Be surface

For D, Be and BeD leaving the surface there is little, if any effect of the surface temperature T, at least if T is in the range 420 to 720K.

Compare:
1eV corresponds to 11000K
Be boils at 3240K (cohesive energy)

Experiments show a definite T-dependence
Mechanism of T influencing sputtering?
Further MD-related works:

- surface dependence trajectory analysis
3 Stability of BeH molecules

Reaction Thermodynamics
Be \leftrightarrow BeH \leftrightarrow BeH$_2$
and other equilibria

Alexander Kaiser
Ivan Sukuba
Stefan Huber
Michael Probst

Not yet published
Calculations:

- \(\Delta G_f \) and \(\Delta H_f \) – values (free formation energies and - enthalpies) for various neutral, cationic and anionic \(\text{Be}_x\text{H}_y \) – species.
- \(\Delta \Delta G \) – values (free energies of \textit{reactions}) and equilibrium constants at different temperatures for the various interconversion reactions of neutral and ionic \(\text{Be}_x\text{H}_y \) – species have been calculated.
- This gives the equilibrium concentrations of these molecules.
- The electron-impact cross sections of these molecules have also been calculated.
What we aimed for:

- Stability analysis
- Enthalpy and Free energy of reactions
- Transition states (in progress)
- Rate constants for various BeD$_2$ and BeD$_3$ channels
- Ab initio methods:
 - Accuracy of the G4 method of theory is very good!
 - also CCSD, QCISD

Basic formulas:

\[\Delta G = \Delta G^0 + RT \ln(Q_r) = RT \ln\left(\frac{Q_r}{K_{eq}}\right) \]

- Q_r ... reaction quotient
 - initial concentrations

Sputtering yields from MD simulations and experiments
(not not used yet, but data available)

\[\ln\left(\frac{Q_r}{K_{eq}}\right) \text{ determines the direction of the reaction} \]

Eyring equation for rate constants
\[k(T) = \frac{k_B T}{h} \exp\left(-\frac{\Delta G^\Phi}{RT}\right) \]

All values are calculated
Motivation

Discrepancies between MD results and experiment at high temperatures (500 K)

Data for ERO (need for data in general)

Explanation of reactivity of BeD$_2$ and BeD$_3$

BeD$_{1-3}$ molecules

Few experimental data

If, only for BeD (spectroscopic data)

Theoretical data only for BeD
Input to ΔG and k – calculations
QC data components:

BeH_298.15.log 8.31E-03 kJ/(MolK)

Eelec -15.2667771 3.17E-06 Hartree/MolK
ZPE 0.003367
TCEnergy 0.005733 ZPE+E vib+E rot+E trans
TCEnthalpy 0.006677 0.00668 ZPE+E vib+E rot+E trans+RT
TCGibbs -0.01407
Eelec+ZPE -15.26341
Eelec+thermal Enthalpy -15.2601 -15.26010 Eelec+TCEnthalpy
Eelec+thermal free energy -15.280847 -15.28085 Eelec+TCGibbs
The reaction network. Free energies as function of temperature

G4 reaction free energies ΔG_r^0 (Ochterski approach from gaussian calculations)

<table>
<thead>
<tr>
<th>T (K)</th>
<th>BeD → BeD⁺</th>
<th>BeD₂ → BeD⁺₂</th>
<th>BeD₂ → BeD⁺ + D⁻</th>
<th>Be⁺ + D → Be⁺ + D⁻</th>
<th>Be⁺ + D⁻ → Be⁺⁺ + D⁻</th>
<th>Be⁺⁺ + D⁻ → Be⁺⁺⁺ + e⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>207.58</td>
<td>159.43</td>
<td>393.56</td>
<td>601.14</td>
<td>237.98</td>
<td>154.44</td>
</tr>
<tr>
<td>100.00</td>
<td>202.52</td>
<td>148.48</td>
<td>380.10</td>
<td>582.61</td>
<td>233.07</td>
<td>148.79</td>
</tr>
<tr>
<td>200.00</td>
<td>195.72</td>
<td>135.26</td>
<td>364.37</td>
<td>560.09</td>
<td>226.44</td>
<td>140.30</td>
</tr>
<tr>
<td>298.15</td>
<td>188.42</td>
<td>121.56</td>
<td>346.20</td>
<td>536.62</td>
<td>219.30</td>
<td>131.03</td>
</tr>
<tr>
<td>300.00</td>
<td>188.28</td>
<td>121.29</td>
<td>347.89</td>
<td>536.17</td>
<td>219.17</td>
<td>130.85</td>
</tr>
<tr>
<td>400.00</td>
<td>180.43</td>
<td>106.93</td>
<td>331.01</td>
<td>511.43</td>
<td>211.52</td>
<td>120.89</td>
</tr>
<tr>
<td>500.00</td>
<td>172.29</td>
<td>92.36</td>
<td>313.88</td>
<td>486.16</td>
<td>203.63</td>
<td>110.62</td>
</tr>
<tr>
<td>600.00</td>
<td>163.94</td>
<td>77.66</td>
<td>296.59</td>
<td>460.52</td>
<td>195.57</td>
<td>100.16</td>
</tr>
<tr>
<td>700.00</td>
<td>155.43</td>
<td>62.89</td>
<td>279.18</td>
<td>434.61</td>
<td>187.38</td>
<td>95.09</td>
</tr>
<tr>
<td>800.00</td>
<td>146.80</td>
<td>48.10</td>
<td>261.69</td>
<td>408.50</td>
<td>179.10</td>
<td>85.93</td>
</tr>
<tr>
<td>900.00</td>
<td>138.08</td>
<td>33.29</td>
<td>244.15</td>
<td>382.23</td>
<td>170.74</td>
<td>75.83</td>
</tr>
<tr>
<td>1000.00</td>
<td>129.28</td>
<td>18.48</td>
<td>226.56</td>
<td>355.83</td>
<td>162.32</td>
<td>65.74</td>
</tr>
</tbody>
</table>
The reaction network. Free energies as function of temperature

<table>
<thead>
<tr>
<th>Table 11 continued</th>
<th>(\Delta G)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>(K)</td>
<td>kJ/Mol</td>
<td>kJ/Mol</td>
<td>kJ/Mol</td>
<td>kJ/Mol</td>
<td>kJ/Mol</td>
<td>kJ/Mol</td>
<td>kJ/Mol</td>
<td>kJ/Mol</td>
<td>kJ/Mol</td>
</tr>
<tr>
<td>(\Delta G_0)</td>
</tr>
<tr>
<td>(T)</td>
<td>Be(\text{D}_3 \rightarrow \text{BeD}_2 + \text{D})</td>
<td>Be(\text{D}_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<p>ightarrow \text{BeD} + \text{D}_2) | Be(\text{D}_3^+
ightarrow \text{BeD} + \text{D}_2^+) | Be(\text{D}_3^+
ightarrow \text{BeD}_2^+ + \text{D}) | Be(\text{D}_3^+
ightarrow \text{BeD}_2 + \text{D}^+) | Be(\text{D}_3^-
ightarrow \text{BeD}_2^- + \text{D}) | Be(\text{D}_3^-
ightarrow \text{BeD} + \text{D}_2^-) |
| 0 | 33.0235 | -15.1281 | 93.2945 | 779.4136 | 462.3006 | 648.9368 | 284.7013 | 331.3433 | 203.6390 |
| 100 | 33.2808 | -20.7546 | 87.4948 | 771.7892 | 454.6577 | 648.9920 | 284.4440 | 325.4648 | 198.1753 |
| 200 | 30.8102 | -29.6524 | 78.8437 | 761.3161 | 444.4393 | 646.7393 | 284.0475 | 317.2969 | 189.2985 |
| 298.15 | 27.6964 | -39.1698 | 69.8409 | 750.5174 | 433.7640 | 644.0858 | 283.4358 | 308.5671 | 179.5658 |
| 300 | 27.6360 | -39.3510 | 69.6676 | 750.3100 | 433.5592 | 644.0560 | 283.4200 | 308.3990 | 179.3767 |
| 400 | 24.1940 | -49.2990 | 60.3550 | 739.1542 | 422.3772 | 641.2152 | 282.6455 | 299.2098 | 169.0218 |
| 500 | 20.6443 | -59.2812 | 51.0476 | 727.9591 | 411.0141 | 638.2983 | 281.7975 | 289.9313 | 158.5224 |
| 600 | 17.0684 | -69.2082 | 41.7874 | 716.7640 | 399.5275 | 635.3420 | 280.9127 | 280.6501 | 147.9942 |
| 700 | 13.4951 | -79.0407 | 32.5956 | 705.5767 | 387.9438 | 632.3568 | 280.0069 | 271.4058 | 137.5132 |
| 800 | 9.9401 | -88.7655 | 23.4746 | 694.4052 | 376.2918 | 629.3480 | 279.0958 | 262.2191 | 127.1083 |
| 1000 | 2.9064 | -107.8900 | 5.4610 | 672.1357 | 352.8435 | 623.2988 | 277.2580 | 244.0270 | 106.5559 |</p>

The product anion is unstable.
Enthalpy and Free energy as function of temperature (kJ/mol)

At low T BeD$_2$ is much favoured over Be and D$_2$
At 1000K both BeD$_2$ and Be+D$_2$ are equally probable
4 DFT of Be$_2$W and Be$_{12}$W surfaces

Surface binding energies of beryllium/tungsten alloys
Gyoeroek, Michael; Kaiser, Alexander; Sukuba, Ivan; Urban, Jan; Hermansson, Kersti; Probst, Michael
Surfaces of Interest

- pure Be - hexagonal close packed (0001)
- pure W - body centered cubic (001)
- $\text{Be}_2\text{W} (001)$
- $\text{Be}_{12}\text{W} (001)$
VASP ...
- Density functional theory
- Widely used in materials science
- Plane waves, LAPWs as basis sets
- PBE functional
- Periodic systems
2. Methods

Surface Model

- periodic boundary conditions
- vacuum depth 8 [Å]
- orientation (001)
2. Methods

Surface Binding Energy & Cohesive Energy

\[E_{SBE} = E_{atom} + E_{SV} - E_S \]
\[E_{coh} = \frac{E_{bulk} - \sum_i n_i E_{atom(i)}}{\sum_i n_i} \]

- \(E_{atom} \) - single atom energy
- \(E_{SV} \) - total energy of the surface slab with a single surface vacancy
- \(E_S \) - total energy of the slab with the clean surface
- \(E_{bulk} \) - total bulk energy
- \(n_i \) - number of atoms of each species
Surface Binding Energies: Pure Metals

<table>
<thead>
<tr>
<th>structure</th>
<th>vacancy</th>
<th>SBE [eV]</th>
<th>no. of neighbors</th>
<th>distance [Å] (number of neighbors)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DFT</td>
<td>ABOP</td>
<td>W-W</td>
</tr>
<tr>
<td>Be hcp (0001)</td>
<td>Be</td>
<td>5.128</td>
<td>4.26</td>
<td>- 9</td>
</tr>
</tbody>
</table>
Alloys: Geometric Arrangement

\[\text{Be}_2\text{W} \]

\[\text{Be}_{12}\text{W} \]
Results

Surface Binding Energies

<table>
<thead>
<tr>
<th>Surface A, Be₁₂W (001)</th>
<th>vacancy</th>
<th>SBE [eV]</th>
<th>no. of neighbors</th>
<th>distances [Å] (number of neighbors in parentheses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be (α)</td>
<td>DFT</td>
<td>W</td>
<td>8</td>
<td>2.528 (1), 2.144 (1), 2.209 (2), 2.333 (1), 2.340 (2), 2.593 (2)</td>
</tr>
<tr>
<td>Surface A, Be (γ)</td>
<td>4.12</td>
<td>1 7</td>
<td>2.595 (1)</td>
<td>2.104 (2), 2.151 (2), 2.333 (1), 2.340 (2)</td>
</tr>
<tr>
<td>Surface A, W (β)</td>
<td>6.81</td>
<td>0 12</td>
<td>2.528 (4), 2.596 (4), 2.755 (4)</td>
<td></td>
</tr>
<tr>
<td>Surface B, Be (δ)</td>
<td>4.33</td>
<td>1 5</td>
<td>2.755 (1)</td>
<td>2.104 (3), 2.209 (2)</td>
</tr>
</tbody>
</table>
Comparison DFT vs. ABOP - Be$_2$W
Comparison DFT & ABOP – Be$_{12}$W
Cohesive energy correlations

Melting Points [K]
- W: 3687
- Be_2W: 2523
- Be_{12}W: 2023
- Be: 1560
Conclusions:

- Increasing tungsten content stabilizes the whole material (against sputtering).
- Preferential sputtering of Be (only).
- One case where there is a large discrepancy with BOP.
Thank you!