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Outline

• Lithium – example of how fundamental data relates to the 
‘atomic data’ used in magnetic confined fusion modelling 

• ADAS – atomic models and database to store both fundamental 
and effective atomic data. 

• Tungsten. 
• Perspectives from marshalling and data provision. 
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Fundamental vs. derived data – ionization of Li0

J Colgan et al, Phys Rev A. 63, 062709 (2001)

ADAS effective rate for Li0 + e 
ionization. 
A derived coefficient dependent on 
the local electron temperature and 
density. 

1010 cm-3
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The collisional-radiative model is a good description  
of a finite density plasma

J P Allain et al, Nuclear Fusion, 44 (2004) 
p655
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Finite density environment 
collisonal-radiative picture for ionisation and recombination

At higher densities, collisional 
excitation and de-excitation between 
excited levels compete with 
spontaneous emission.

Reactions:

Indirect pathways lead to line 
emission and ionisation may occur in 
a stepwise manner.

Not all recombinations lead to 
growth of the ground population 
of the recombined ion.

Three-body recombination must 
be added to the reactions which 
pairs with collisional ionisation 
from excited states
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Finite density environment 
generalized collisonal-radiative approach – projection of high-n levels

• For light/medium weight 
elements there is a truncation 
problem since the true atom 
with its infinite number of 
Rydberg states.  

• Dielectronic recombination 
populates high lying states. 

• Setup a bundle-n collisional-
radiative matrix for the whole 
system. Use the inverse sub-
matrix propagator for the ry n-
shells to project onto the ryls n-
shells. 

   
• Eliminate the direct couplings 

and expand statistically over the 
ryls nS-shell substructure and 
add to the more exact 
collisional-radiative matrix for 
ry.
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Timescales for transport and atomic processes

Emission                neX ≈ 1020 m-3 ×10-12 m3/s ≈ 108/sec 

Ionisation               neS ≈ 1020 m-3 ×10-14 m3/s ≈ 106/sec 

Diffusion            D/(0.1 a)2 ≈ 1 m2/sec / 0.01m2 ≈ 100/sec 
Convection            v/(0.1 a) ≈ 1 m/sec / 0.1m ≈ 10/sec 
Recombination      neα ≈ 1020 cm-3 ×10-20 m3/s ≈ 1/sec 

• Emission is a local process 
• Timescale for transport is slower than ionisation but faster than 

recombination, therefore density profile of individual ionisation 
stage is determined non-locally
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Spatial Distribution of Ions
Equilibrium (coronal) ionisation balance is not a safe assumption for tokamak plasmas

Charge exchange with neutral hydrogen can also be a significant contributor to overall 
recombination

  X-ray  visible
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Finite density and metastables
• A finite electron density plasma results in ‘effective’ source coefficients.  

Corona      Tokamak    
fl

ar
e
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Finite density and metastables
• A finite electron density plasma results in ‘effective’ source coefficients.  

Metastables are followed in time

Ordinary levels are in quasi-static 
equilibrium with their metastable
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GCR coefficients
Considering the metastable level (or term) populations: 
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What we need to model emission from fusion plasmas

If we wish to interpret/predict the emission from plasmas: 

• Require atomic and molecular data 
• Not necessarily of highest quality – completeness is as important 
• Fundamental data mediated via models to be useful for modelling 

and  
diagnostic use. 

• The derived/effective data must be a parameterization of atomic 
features with macroscopic plasma quantities (Te, Ti, Ne, B, I etc.). 

• Large amounts of data involved. 

Necessary tasks: 

• Gather/calculate fundamental data. 
• Develop appropriate (collisional-radiative) models. 
• Store data in a well defined way. 
• Assess the quality of the data.
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Most data within ADAS is ab initio

Li0 excitation cross sections

Rely on the atomic codes being benchmarked against  experiment when 
possible 
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Excitation data for population modelling

Scrutiny of individual transitions becomes difficult when the complexity 
of the ion structure increases.
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ADAS data formats (adf)
All ADAS data is stored in a well defined, tightly specified, format – eg. adf04 file.

A free-format comment section at the end details the source and responsible person.
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Modelling lithium results in 64  datasets
Driver for adas8#1 adf04 
adf34/lithium/li0.dat 
adf34/lithium/li1.dat 
adf34/lithium/li2.dat 

Baseline adf04 to give baseline fill-in and A-values 
adf04/copmm#3/ls#li0.dat 
adf04/copmm#3/ls#li1.dat 
adf04/copmm#3/ls#li2.dat 

R-matrix data from Connor Ballance and Don Griffin 
adf04/lilike/lilike_cpb02#li0.dat 
adf04/helike/helike_cpb02#li1.dat 
adf04/hlike/hlike_cpb02#li2.dat 

Metastable and excited state resolved   
ionisation data from S Loch 
adf07/szd02#li/szd02#li_li0.dat 
adf07/szd02#li/szd02#li_li1.dat 
adf07/szd02#li/szd02#li_li2.dat 

State resolved radiative recombination from Nigel 
Badnell 
adf48/nrb05#he/nrb05#he_li1ls.dat 
adf48/nrb05#h/nrb05#h_li2ls.dat 
adf48/nrb05##/nrb05##_li3ls.dat 

State resolved dielectronic  recombination from  
N Badnell and M Bautista 
adf09/nrb00#h/nrb00#h_li2ls12.dat 
adf09/nrbmb00#he/mb00#he_li1ls12.dat 
adf09/nrbmb00#he/mb00#he_li1ls23.dat 

Fully specified adf04 file for processing 
adf04/adas#3/cpb02_ls#li0.dat 
adf04/adas#3/cpb02_ls#li1.dat 
adf04/adas#3/cpb02_n#li2.dat 

Mapping high-n to low levels 
adf18/a17_p208/exp96#li/
exp96#li_li0ls.dat 
adf18/a17_p208/exp96#he/
exp96#he_li1ls.dat 
adf18/a17_p208/exp96#h/exp96#h_li2n.dat 

Projection matrices 
adf17/cbnm96#li/cbnm96#li_li0ls.dat 
adf17/cbnm96#he/cbnm96#he_li1ls.dat 
adf17/cbnm96#h/cbnm96#h_li2ls.dat 

iso-electronic GCR data 
adf10/acd96/pj#acd96_li11.dat 
adf10/acd96/pj#acd96_li21.dat 
adf10/scd96/pj#scd96_li11.dat 
adf10/scd96/pj#scd96_li21.dat 
adf10/xcd96/pj#xcd96_li12.dat 
adf10/xcd96/pj#xcd96_li21.dat 
adf10/plt96/pj#plt96_li##.dat 
adf10/prb96/pj#prb96_li10.dat 
adf10/prb96/pj#prb96_li20.dat 

iso-nuclear source and power - resolved 
adf11/acd96r/acd96r_li.dat 
adf11/scd96r/scd96r_li.dat 
adf11/qcd96r/qcd96r_li.dat 
adf11/xcd96r/xcd96r_li.dat 
adf11/plt96r/plt96r_li.dat 
adf11/prb96r/prb96r_li.dat 

iso-nuclear source and power - 
unresolved 
adf11/acd96/acd96_li.dat 
adf11/scd96/scd96_li.dat 
adf11/ecd96/ecd96_li.dat 
adf11/ycd96/ycd96_li.dat 
adf11/zcd96/zcd96_li.dat 
adf11/plt96/plt96_li.dat 
adf11/prb96/prb96_li.dat 

Ionisations per photon 
adf13/sxb96#li/sxb96#li_pjr#li0.dat 
adf13/sxb96#li/sxb96#li_pju#li0.dat 
adf13/sxb96#li/sxb96#li_pjr#li1.dat 
adf13/sxb96#li/sxb96#li_pju#li1.dat 
adf13/sxb96#li/sxb96#li_pjr#li2.dat 
adf13/sxb96#li/sxb96#li_pju#li2.dat 

Photon emissivity coefficients 
adf15/pec96#li/pec96#li_pjr#li0.dat 
adf15/pec96#li/pec96#li_pju#li0.dat 
adf15/pec96#li/pec96#li_pjr#li1.dat 
adf15/pec96#li/pec96#li_pju#li1.dat 
adf15/pec96#li/pec96#li_pjr#li2.dat 
adf15/pec96#li/pec96#li_pju#li2.dat

In OPEN-ADAS
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Lithium – only 3 electrons

• 64 adf datasets  
• 43 in OPEN-ADAS: fundamental data (excitation, DR, RR and 

ionisation)  
     derived data (source, power, S/XB and PEC 
coefficients)
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What is ADAS?
• ADAS, as a database delivers: 

o extensive fundamental and derived data tuned for plasma modelling and 
spectroscopic analysis, 

o provides ‘baseline’ level data for any element and ion stage. 
o atomic data source for many modelling codes and systems, 
o makes a significant quantity of data publically available via OPEN-ADAS 

http://open.adas.ac.uk (with IAEA). 

• ADAS, as a computer system, is designed to: 
o provide a set of interactive codes which are easy to use, 
o provide subroutine libraries for inclusion in other codes, 
o allow direct access to diagnostically relevant data. 

• ADAS, as a collaborative organisation: 
o provides guidance (training courses, visits etc.) on running codes, 
o gives recommendation on the best data to use, 
o assists in analysis and development of analysis tools and models.

It is structured as a self-funded consortium between most major fusion laboratories 
and universities. Its historical roots are in JET and is now managed by Strathclyde 
University but governed by a steering committee of the participating members.
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ADAS data and computational overview

There are 55 different ADAS data formats 

Some key ADFs and MDFs for general application 

ADF01 : charge exchange cross sections 
ADF04 : specific ion data 
ADF11 : coll.-rad. ionis., recom. and 
related       coefficients. 
ADF13 : ionisation per photon ratios 
ADF15 : emissivity coefficients 
ADF40 : envelope feature photon emiss.          
coefficients 
ADF21 : beam stopping coefficients 
ADF39 : photoionization cross sections 

MDF00: fundamental diatomic molecular       
       constants 
MDF01: rovibronic models 
MDF02: fundamental cross-section data 
MDF04: specific molecule data

Interactive user interface 
ADAS series (9 series with 85 
programs) 

 The application interface 
ADAS Fortran subroutine  (~1900) , 
IDL procedure (~1700)  and python 
(~30) routine libraries 
Data extraction procedures and 
subroutines by format: xxdata_<nn> ,  
read_adf<nn>,  xxdatm_<nn> , 
read_mdf<nn> . 

Offline-ADAS for large scale production 
6 large scale production packages:  
adas7#1, adas7#3, adas8#1, adas8#2, 
adas8#3, adas8#4 . 

Documentation – examples, manual and 
course material.
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OPEN-ADAS: http://open.adas.ac.uk

• Fundamental data 
• Derived data for modelling 

and diagnostics
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Who thought that tungsten was a good idea?
• Interpret emission from fuel (H, D, T and He) and impurities (Be, Ne, Ni, W).

Although emission from impurities gives information, their presence is not always 
benign.
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W18+ dielectronic recombination

90, 032715,2014)
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Tungsten DR and ionization balance
• Dielectronic recombination rates for tungsten were the most poorly calculated 

input to the ionization balance. 
• T Pütterich scaled the ADPAK average ion rates to match AUG measurements. 
• Limited to 2keV < Te < 10keV (W20+ – W55+ or Xe-like to K-like) PPCF, v50, 085016 

2008 
• DR rates for ions with open 4fn shell ions are x3 higher than expected, 

Schippers et al, Phys Rev A 83, 012711, 2011 & Badnell et al, Phys Rev A 85, 
052716 2012 

• ADAS DR Projected started in 2016 and is ongoing…..   

  

• 4fn still an issue 
• But now constrained from 

both sides 
• It’s the pedestal region for 

JET (100-1000eV) 

• Preval et al, 
• 73 – 56: PRA 93, 042703 

(2016) 
• 55 – 38: JPB 50, 105201 

(2017) 
• 37 – 28: JPB 51, 015004 

(2018) 
• 27 – 14: calculations 

underway 
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Optimizing the radiated power
• A rule-based algorithm to choose the configurations needed based on the 

metric of optimizing the total radiated power. 
• Data from Cowan with AUTOSTRUCTURE supplementation for spin-changing 

and higher multipole transition probabilities

S Henderson et al, PPCF. 59, 055010 (2017)
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Optimizing atomic structure

• Wish to move to 
AUTOSTRUCTURE distorted-
wave as a new baseline quality. 

• Same driver files for R-matrix. 

• Good atomic structure is 
essential for high quality 
derived data. 

• And is the basis for uncertainty 
estimation. 

• Default results could be better. 
• Optimization converges quickly. 
• But it needs a ‘good’ target. 
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Optimizing structure across iso-electronic  
and iso-nuclear sequences

• AUTOSTRUCTURE uses a Thomas-Fermi potential and individual orbitals can 
be scaled to improve results along iso-electronic and iso-nuclear sequences. 

• Unfortunately data from NIST becomes sparse very quickly.  
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Optimizing the radiated power
• One outcome is a set of adf04 excitation data in collision strength and 

effective collision strength forms. 
• These can be applied to spectral problems 

• Mono-energetic ADAS population model, producing a spectral 
feature, fitted to an EBIT spectrum with ADAS feature-fitting LSQ 
code. 

• Goal is to apply (shifted) features to tungsten emission from 
tokamaks.
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Intermediate coupling GCR – prototyped with Argon

• Required ion impact to mix closely-spaced energy levels (stored in 
adf06 files) 

• Increases the number of metastables. 
• Raises questions on how to handle/classify these metastables. 

Generating derived data targeted at the plasma environment under 
study is necessary.
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Conclusions
• Advancing the quality of atomic data required for fusion is important. 
• The quantity and use of data for modelling and diagnostics is such that the ab 

initio codes used to produce these data must be validated by measured data 
wherever possible. 

• The code validation does not necessarily need to be fusion relevant. 

• The way atomic data will be used is changing, being embedded into complex 
analysis chains, some with machine protection implications (and 
responsibilities). 

• Provenance of atomic data is important. 
• Provenance goes hand in hand with validation. 

• At ITER a measurement requirement (a diagnostic) is characterised and ranked 
by: 

• needed for machine protection. 
• needed for basic machine control. 
• required for advanced plasma control. 
• required for evaluation and physics studies. 

• But all discharges at ITER must be modelled and verified before execution so 
accurate atomic data is still essential. 
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Spend more time on atomic data and models! 

http://adas.ac.uk/


