



**Combined molecular dynamics and kinetic Monte** Carlo modelling to simulate D deposition and Be sputtering at realistic fluxes.



Elnaz Safi,

ngin yliopisto FORS UNIVERSITET UNIVERSITY OF HELSINKI

Department of Physics, University of Helsinki, Finland

#### **Group presentation**



Prof. Kai Nordlund Principal investigator



Doc. Antti Kuronen Principal investigator



Doc. Krister Henriksson **Nuclear Materials** 



Dr Carolina Björkas Fusion reactor mat'ls



Dr Andrea Sand Fusion reactor mat/ls



Dr. Andrey Ilinov Ion beam processing



M Sc Laura Bukonte Fusion reactor mat/ls



M Sc Wei Ren Carbon nanostructures



M Sc Fredric Granberg Dislocations



M Sc Morten Nagel Nuclear materials



M Sc Elnaz Safi Fusion reactor mat/ls



M Sc Alvaro Lopez Surface ripples



M Sc Shuo Zhang Ion range calculations



Mr Jesper Byggmästar Fusion reactor mat/ls



Ms Vitoria Pacela Nanowires



M Sc Simon Vigonski Particle physics mat'ls



Doc. Flyura Djurabekova Principal investigator

Dr Ville Jansson

Particle physics mat'ls



Dr Vahur Zadin\* Particle physics mat'ls (Univ. of Tartu)



M Sc Anders Korsbäck Particle physics mat/ls



M Sc Henrique Muinoz Swift heavy ions





Dr Andreas Kyritsakis

Particle physics mat'ls

M Sc Ekaterina Baibuz Particle physics mat'ls

M Sc Mihkel Veske Particle physics mat'ls



Mr Christoffer Fridlund Ion beam processing



Ms Jonna Romppainen Atom probe tomography















#### Reminders of background:

- Molecular dynamics
- > The rich materials science of plasma-wall interactions
- Swift chemical sputtering of Be

#### Results for H isotope interactions with Be by combined MD and KMC modelling

# **MD** simulations of radiation effects

Molecular dynamics simulations: solving Newton's equations of motion of a system of atoms



Basic simple example:



HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science Department of Physics Prof. Kai Nordlund

# The rich materials science of plasmawall interactions



Just for a single ion all of the below effects *may* be produced:





HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI



# The rich materials science of plasma-wall interactions: high fluences



In addition, for multiple ions i.e. prolonged irradiation many more things can happen, for instance:



Spontaneous roughening/ripple formation



[T. K. Chini, F. Okuyama, M. Tanemura, and **K. Nordlund,** Phys. Rev. B **67**, 205403 (2003); Norris et al, Nature communications **2**, 276 (2011)]

#### Precipitate/nanocluster, bubble, void or blister formation inside solid



HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

[Bubbles e.g: K. O. E. Henriksson, **K. Nordlund**, J. Keinonen, D, Physica Scripta **T108**, 95 (2004); Nanocrystals e.g. 75S. Dhara, Crit. Rev. Solid State Mater. Sci. 32, 1 [2007)]

# The rich materials science of plasmawall interactions: high fluences

Phase changes, e.g. amorphization:







Spontaneous porousness formation, "fuzz" Highly fusion-relevant now, He -> W does it

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

www.helsinki.fi/yliop

[http://vlt.ornl.gov/research/201 10119\_highlight\_doerner.pdf]



HELSINGIN YLIOPISTO HELSINGFORS UNIVERSI UNIVERSITY OF HELSINK

**[For a review see:** K. Nordlund, C. Björkas, T. Ahlgren, , A. Lasa, and A. E. Sand, *Multiscale modelling of plasma-wall interactions in fusion reactor conditions*, J. Phys. D: Appl. Phys. **47**, 224018 (2014), Invited paper for Special Issue on Fundamentals of plasma-surface interactions].





# Old results: Sputtering of initially pure Be by D



Our simulations  $10^{-1}$ agree with plasma Sputtering yield (atoms/ion) experiments done at the **PISCES-B** facility 10<sup>-2</sup> at low energies At higher energies 10<sup>-3</sup> with the rest Sputtering is seen at  $10^{-4}$ 100 10 7 eV!

[C. Björkas, K. Vörtler, K. Nordlund, D. Nishijima, and R. Doerner, New J. Phys. 11, 123017 (2009)]

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

www.helsinki.fi/yliopisto

Ion energy (eV)

(0001) rough

 $(\overline{11}20)$  rough (0001) perfect  $(\overline{11}20)$  perfect Exp. I (RT)

Exp. II (600-650°C) Exp. III high D cont. Exp. IV low D cont.

Eckstein formula fit

SRIM

1000



# Old results: Sputtering of initially pure Be by D



The low-E sputtering is explained by swift chemical sputtering



www.helsinki.fi/yliopisto

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI D Irradiation
At low energies a large fraction of Be is eroded as BeD molecules

Chemical sputtering!

This fraction decreases with ion energy

This collaboration came out of a previous IAEA meeting with Doerner!

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

# Old results on Be sputtering D irradiation of initially pure Be



# Old results on Be sputtering Potential dependence

The sputtering yield of pure Be depends on the potential

[C. Björkas et al, Plasma Physics and Controlled Fusion 55, 074004 (2012)]





# Limitations of old work

- Time scale of MD: flux is very high  $\rightarrow$  no time for D migration  $\rightarrow$  H surface concentration may be too high
- Apparent dilemma: experiments do not observe any (or very little) BeD<sub>2</sub>, while these simulations show a lot
- Possible solution 1: DFT calculations from Michael Probst's group indicate the BeD<sub>2</sub> is fairly unstable and will in a plasma likely decay quickly into Be + D<sub>2</sub> or BeD + D
- Possible solution 2: too little D migration overestimates D surface concentration?

# Motivation for current work



We wanted to understand the relationship between Be surface temperature, D concentration and sputtering yields for plasmasurface interaction (PSI) studies:



#### Be erosion:

a) Need for modeling to provide

detail description on the underlying mechanism

b) **MD** modeling of Be exposed to D: a parameter scan

Parameters known to affect erosion:

- Energy (E<sub>imp</sub>)
- Angle ( $\alpha_{imp}$ )
- Flux (Γ<sub>imp</sub>)
- Surface temperature  $(T_{surf})$
- Deuterium concentration (c<sub>D</sub>)

Commonly studied

Little known

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI



# **Motivation** MD modeling of D $\rightarrow$ Be: T<sub>surf</sub> and c<sub>D</sub>



 $T_{surf}$ : cumulative D impacts on Be show a complex outcome for molecular erosion



- Larger molecules are also emitted when c<sub>D</sub> increases on the topmost layer
- Due to very different D profiles:

 $T_{surf} \sim \begin{cases} < 600 \text{K} \rightarrow \text{D} \text{ implantation} \\ 600\text{-}900 \text{K} \rightarrow \text{D} \text{ at topmost layers} \\ > 900 \text{K} \rightarrow \text{D2 desorption} \end{cases}$ 



HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI



# **Motivation**

#### Complex relationship T<sub>surf</sub>- c<sub>D</sub>



There is a complex relationship between  $T_{surf}$  and  $c_{D}$ Non-cumulative simulations to study  $T_{surf}$  and  $c_{D}$  independently  $c_{D}$  from cumulative irradiation cannot be assumed "in equilibrium"  $\rightarrow$  Estimate (based on indirect experimental deductions by S. Brezinsek)  $c_D = 30\%$  for low  $T_{surf} \sim 360$  K and  $c_{D} = 5\%$  for high  $T_{surf} \sim 800$ K



The outcome soon diverged from JET observations

=> A rigorous study of  $c_D = c_D(T_{surf})$  needed

HELSINGIN YLIOPISTO GFORS UN UNIVERSITY OF HELSINKI





Since the experimental evidence indicates there is a a complex relationship  $T_{surf}$  and  $c_{D_i}$  and MD overestimates fluxes, we took on the following multi-scale approach:

a) To get the long term evolution of D in Be:

#### **use KMC** to get <u>equilibrium D profiles in Be</u>

b) Use KMC outcome to get surface D concentration

for non-cumulative MD runs, to get more accurate

structures and yields

# **Kinetic Monte Carlo method**





# Kinetic Monte Carlo method: comments on algorithm



The KMC algorithm is actually exactly right for so called Poisson processes, i.e. processes occurring independent of each other at constant rates



> "Stochastic but exact"

> Typical use: atom diffusion: rates are simply atom jumps

- Ion impact on surface is also a process with a rate!
- > But the big issue is how to know the input rates  $r_i$ ??
  - > The algorithm itself can't do anything to predict them
  - > I.e. they have to be known in advance somehow
- From experiments, DFT simulations, …
- > Also knowing reactions may be difficult
- Many varieties of KMC exist: object KMC, lattice object KMC, lattice all-atom KMC, …
  - $\succ$  For more info, see wikipedia page on KMC (written by me  $\odot$ )

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science Department of Physics Prof. Kai Nordlund



# Method

#### Step 1: OKMC



In practice, took into use the Open source MMonCa code [1]



- Implemented into this for Be:
  - D implantation
  - Diffusion
  - Cluster formation
  - Trapping / detrapping
- Objects are vacancies V , H/D, carbon C, HV (hydrogen-vacancy complex) and their clusters



# OKMC

#### Parametrization for Be



### Migration and dissociation follow:

 $v = v_0 \exp(-E^{activation}/k_BT)$ 

- Tabulated values for parameters needed for all objects (DFT data):
  - Binding energies for H<sub>n</sub>V and H<sub>n</sub>C
  - Migration energies
  - $\succ$  E<sub>A</sub> = binding E + migration E for

#### dissociation from cluster

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

#### Parameterization

|     | E <sub>migration</sub> (eV) | E <sub>formation</sub> (eV) |
|-----|-----------------------------|-----------------------------|
| V   | 0.89 <sup>[9]</sup>         | 0.96 [10]                   |
| Н   | 0.6 <sup>[11]</sup>         | 0.88 [12]                   |
| H-V | 1 <sup>[9]</sup>            | 0.85 [13]                   |
| С   | 0.76 [from NBE]             | 0.4                         |

[9] Martin-Bragado et al., 2013
[10] S.C. Middleburgh et al., A. Materiala 59 (2011)
[11] M.G. Ganchenkova et al., PRB 75 (2007)
[12] A. Allouche et al., J. Phys. Chem. C 114 (2010)
[13] Calculated within the code
[From NBE]: Elnaz Safi parcas-NEB calculation



#### Simulation details:

- Box size: 10 \* 10 \* 100 nm
- Mesh: 0.5 \* 0.5 \* 0.5 nm
- T = 300, 400, 500, 600,

700 and 800 K

- H Flux ~ 10<sup>18</sup> cm<sup>-2</sup>s<sup>-1</sup>
- Impurity concentration = 1% C
- Vacancy concentration  $(c_V) =$ 
  - 0, 1, 5, 10 and 20%



## OKMC Results



#### Depth profile of D for different vacancy concentration:



- Almost linear dependence of  $c_{\rm D}$  on  $c_{\rm V}$
- Profiles varying weakly for  $c_{\rm V} \sim 0\text{--}10\%$

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI



#### OKMC Results

Depth profile of D for  $c_v = 5\%$  at different temperatures :







- Final profiles used to set up accurate substrate structure in MD for  $c_V = 5\%$
- Also reasonable for co- and re-deposited layers!

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI



#### OKMC Results

 D trapped per vacancy:
 As in W, more than

1 D per V!

|  |       | 300K | 400K | 500K | 600K | 700K | 800K |
|--|-------|------|------|------|------|------|------|
|  | 1% V  | -    | 5    | -    | -    | 4.11 | -    |
|  | 5% V  | -    | 5    | -    | -    | 4.01 | -    |
|  | 10% V | 5    | 4.99 | 4.99 | 4.95 | 3.8  | 1.32 |
|  | 20% V | 5    | 4.99 | 4.99 | 4.95 | 3.26 | 1.13 |



www.helsinki.fi/yliopisto E .Safi, simumeet, 9 June 2016



### Method Step 2: MD

#### **Top-to-bottom multi-scaling:**



OKMC's output was used to set up accurate substrate structures in MD



HELSINGIN YLIOPISTO

UNIVERSITY OF HELSINKI

Making the MD structures:

• Instead of a fixed, uniform concentration,

use D and V profiles given by OKMC

- a) Create vacancies
- b) Insert D atoms:
  - According to depth profiles
  - Accounting for D-per-V results
  - Relax the system after each D





www.helsinki.fi/yliopisto

E .Safi, simumeet, 9 June 2016



## MD

#### **Irradiation runs**





- D irradiation on Be: non cumulative (static) D impacts
  - Substrates are "in equilibrium"
- Less time consuming: impacts can be run in parallel
- More controlled conditions: constant c<sub>D</sub>/substrate morphology
- E<sub>i</sub> = 10, 30, 50, 100, 150 and 200 eV
- T = 300, 400, 500, 600, 700 and 800 K
- Normal impacts to the surface, initiated 5 Å above the surface
- Cell size: 2 \* 2.4 \* 12.0 nm
- Periodic boundary conditions in x, y dimensions







#### MD fed by KMC: Results

Total Be erosion peaks at energies of Total Be sputtering yield (atoms/ion) 100 and 150eV with 0.015 increasing T<sub>surf</sub> 0.01 0.005 0 800 700 Sample temperature (K) 200 150 100 Impact energy (eV) 300 0

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Faculty of Science Department of Physics Prof. Kai Nordlund

# **Comparison of old and new results**







# MD fed by KMC:

Results



The fraction of Be atoms that are sputtered as Be molecules:



- In agreement with JET results [2]: the fraction of Be eroded as BeD decays with increasing T<sub>surf</sub>
- At T<sub>surf</sub> < 600K and E < 100 eV, the main eroded species is BeD!



[2] S. Brezinsek et al., NF 54 (2014) 103001

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science Department of Physics Prof. Kai Nordlund



# Summary and TODO:

- OKMC code parameterized for Be (first time ever!)
- > OKMC results show a linear dependence of  $c_D$  on  $c_V$



- At lower T, vacancies are filled with D atoms (up to 5), while at higher T, D atoms detrap from vacancy and occupy an interstitial site.
- $\succ$  MD results are quite sensitive to D content at the surface and T<sub>surf</sub>
- → Continue the D bombardment on Be cell : at least 3000 impacts
- $\rightarrow$  Compare data to earlier cumulative T<sub>suff</sub> scans







HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

www.helsinki.fi/yliopisto

**OLD Results on Be sputtering by D** 

# **D** on Be non-cumulative run results: Total Be yield (Energy, Temperature)



**OLD Results on Be sputtering by D** 

# D on Be non-cumulative run results: Total Be yield (Energy, Temperature)

