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 Reminders of background:
 Molecular dynamics
 The rich materials science of plasma-wall interactions
 Swift chemical sputtering of Be

 Results for H isotope interactions with Be by 
combined MD and KMC modelling

Contents
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MD simulations of radiation effects
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Molecular dynamics simulations: solving Newton’s 
equations of motion of a system of atoms

A basic MD code can be written in 2 days and is < 1000 
code lines, a modern parallel one > 5 person-years and 
> 10 0000 lines of code

Basic simple example:
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Just for a single ion all of the below effects may be 
produced:

The rich materials science of plasma-
wall interactions

Adatom
Sputtered atom

Crater

Interstitial

Interstitial-like 
dislocation loop

Vacancy-like
dislocation loop

3D extended defects

Implanted ion

Amorphization
Vacancy
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In addition, for multiple ions i.e. prolonged irradiation 
many more things can happen, for instance:
Spontaneous roughening/ripple formation 

Precipitate/nanocluster, bubble, void or blister formation inside solid

The rich materials science of plasma-wall 
interactions: high fluences

[T. K. Chini, F. Okuyama, M. Tanemura, and K. Nordlund, Phys. Rev. B 67, 205403 (2003);
Norris et al, Nature communications 2, 276 (2011)]

[Bubbles e.g: K. O. E. Henriksson, K. Nordlund, J. Keinonen, D, Physica Scripta T108, 95 
(2004); Nanocrystals e.g. 75S. Dhara, Crit. Rev. Solid State Mater. Sci. 32, 1 [2007)]
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Phase changes, e.g. amorphization:

Spontaneous porousness formation, “fuzz”
Highly fusion-relevant now, He -> W does it

The rich materials science of plasma-
wall interactions: high fluences

Amorphous layer

Highly defective layer

[http://vlt.ornl.gov/research/201
10119_highlight_doerner.pdf]
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Simulation framework to handle all
this
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Classical
Molecular 
dynamics

Kinetic Monte Carlo

Discrete dislocation dynamics

Finite Element Modelling

Rate equations

DFT

Most relevant region for ITER

[For a review see: K. Nordlund, C. Björkas, T. Ahlgren, , A. Lasa, and A. E. Sand, Multiscale
modelling of plasma-wall interactions in fusion reactor conditions, J. Phys. D: Appl. Phys. 47, 
224018 (2014), Invited paper for Special Issue on Fundamentals of plasma-surface interactions]. 
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Range of work in our groups
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Kinetic Monte Carlo

Finite Element Modelling [Djurabekova group]

Rate equations [Ahlgren associated group]

DFT

Discrete dislocation dynamics
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Old results: Sputtering of initially 
pure Be by D

Our simulations 
agree with plasma 
experiments done at 
the PISCES-B facility 
at low energies
 At higher energies 

with the rest

Sputtering is seen at 
7 eV!

[C. Björkas, K. Vörtler, K. Nordlund, D. Nishijima, and R. Doerner, New J. Phys. 11, 123017 (2009)]



www.helsinki.fi/yliopisto

 The low-E 
sputtering is 
explained by 
swift chemical 
sputtering

Old results:
Sputtering of initially pure Be by D
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Old results on Be sputtering

D irradiation of initially pure Be
At low energies a 

large fraction of Be is 
eroded as BeD
molecules 
Chemical 

sputtering!
This fraction 

decreases with ion 
energy

This collaboration 
came out of a 
previous IAEA 
meeting with 
Doerner!

PISCES-B
[Björkas et al. 2009]
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The sputtering yield of pure Be depends on the potential

Old results on Be sputtering 

Potential dependence

[C. Björkas et al, Plasma Physics and Controlled Fusion 55, 074004 (2012)]

Pot I vs Pot II:
Pot I has:
- Larger cutoff
- Different elastic

constants
- Different 

thermal 
expansion

- Lower surface
binding energy
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 Time scale of MD: flux is very high  no time for 
D migration  H surface concentration may be 
too high

 Apparent dilemma: experiments do not observe 
any (or very little) BeD2 , while these simulations 
show a lot

 Possible solution 1: DFT calculations from 
Michael Probst’s group indicate the BeD2 is 
fairly unstable and will in a plasma likely decay 
quickly into Be + D2 or BeD + D 

 Possible solution 2: too little D migration 
overestimates D surface concentration?

Limitations of old work
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Motivation for current work

15

 We wanted to understand the relationship between Be surface 
temperature, D concentration and sputtering yields for plasma-
surface interaction (PSI) studies: 

Be erosion:
a) Need for modeling to provide 

detail description on the underlying mechanism
b) MD modeling of Be exposed to D: a parameter scan
Parameters known to affect erosion:

 Energy (Eimp)
 Angle (αimp)   
 Flux (Гimp)
 Surface temperature (Tsurf)                             
 Deuterium concentration (cD)

Commonly studied 

Little known
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Motivation
MD modeling of D → Be: Tsurf and cD

16

 Tsurf: cumulative D impacts on Be show a complex outcome for 
molecular erosion
 Larger molecules are also emitted when cD increases 

on the topmost layer
 Due to very different D profiles:

< 600K → D implantation

600-900K → D at topmost layers

> 900K → D2 desorption 

E. Safi et al., JNM 463 (2014)

Tsurf ~ 
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Motivation
Complex relationship Tsurf- cD

17

E. Safi et al., 
JNM 463 (2014)

 There is a complex relationship between Tsurf and cD
 Non-cumulative simulations to study Tsurf and cD independently
 cD from cumulative irradiation cannot be assumed ”in 

equilibrium” → Estimate (based on indirect experimental
deductions by S. Brezinsek) cD = 30% for low Tsurf~ 360K 
and cD = 5% for high Tsurf~ 800K 

E = 100 eV

 The outcome soon diverged from JET observations

=> A rigorous study of cD = cD(Tsurf) needed

30 – 5% D

360 – 720K
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A true multiscale approach: 
MD + KMC

18

Since the experimental evidence indicates there is a

a complex relationship Tsurf and cD, and MD overestimates

fluxes, we took on the following multi-scale approach:

a) To get the long term evolution of D in Be:

use KMC to get equilibrium D profiles in Be

b) Use KMC outcome to get surface D concentration

for non-cumulative MD runs, to get more accurate 

structures and yields



www.helsinki.fi/yliopisto

Kinetic Monte Carlo method

19

1

i

i j
j

R r
=

=∑Form a list of all N possible transitions i in the system with rates ri

Find a random number u1 in the interval [0,1]
Carry out the event for which                        1i N iR uR R− < <

Calculate the cumulative function                 for all i=0,…,N
0

i

i j
j

R r
=

=∑

Move time forward: t = t – log u2/RN where u2 random in [0,1]

Figure out possible changes in ri and N , then repeat
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Kinetic Monte Carlo method: 
comments on algorithm
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 The KMC algorithm is actually exactly right for so called 
Poisson processes, i.e. processes occurring independent of 
each other at constant rates 
 “Stochastic but exact”

 Typical use: atom diffusion: rates are simply atom jumps
 Ion impact on surface is also a process with a rate!

 But the big issue is how to know the input rates ri ??
 The algorithm itself can’t do anything to predict them
 I.e. they have to be known in advance somehow

 From experiments, DFT simulations, …
 Also knowing reactions may be difficult
 Many varieties of KMC exist: object KMC, lattice object KMC, 

lattice all-atom KMC, …
 For more info, see wikipedia page on KMC (written by me )
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Method
Step 1: OKMC

21

 In practice, took into use the Open source MMonCa
code [1]

 Implemented into this for Be:
 D implantation
 Diffusion 
 Cluster formation
 Trapping / detrapping

Objects are vacancies V , H/D, carbon C, HV 
(hydrogen-vacancy complex) and their clusters

[1] I. Martin-Bradado et al. Computer Physics Communications 184 (2013) 2703
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OKMC
Parametrization for Be

22

 Migration and dissociation follow:

ν = ν0 exp (- Eactivation/kBT)

 Tabulated values for parameters 
needed for all objects (DFT data):

 Binding energies for HnV and HnC

 Migration energies

 EA = binding E + migration E for 

dissociation from cluster

[9] Martin-Bragado et al., 2013
[10] S.C. Middleburgh et al., A. Materiala 59 (2011)
[11] M.G. Ganchenkova et al., PRB 75 (2007)
[12] A. Allouche et al., J. Phys. Chem. C 114 (2010)
[13] Calculated within the code
[From NBE]: Elnaz Safi parcas-NEB calculation
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OKMC
Setup

23

Be ”box”

Simulation details:
 Box size: 10 * 10 * 100 nm

 Mesh: 0.5 * 0.5 * 0.5 nm

 T = 300, 400, 500, 600, 

700 and 800 K  

 H Flux ~ 1018 cm-2s-1

 Impurity concentration = 1% C

 Vacancy concentration (cV) = 

0, 1, 5, 10 and 20% 
p.b.c.
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OKMC
Results

24

Depth profile of D for different vacancy concentration:

 Almost linear dependence of cD on cV

 Profiles varying weakly for cV ~ 0-10% 

E .Safi, simumeet, 9 June 2016
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OKMC
Results

25

Depth profile of D for cV = 5% at different temperatures :

 Final profiles used to set up accurate substrate structure in MD for cV = 5%
 Also reasonable for co- and re-deposited layers!  

E .Safi, simumeet, 9 June 2016
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OKMC
Results

26

300K 400K 500K 600K 700K 800K

1%  V - 5 - - 4.11 -
5% V - 5 - - 4.01 -
10% V 5 4.99 4.99 4.95 3.8 1.32
20% V 5 4.99 4.99 4.95 3.26 1.13

 D trapped 
per vacancy:

 As in W, 
more than
1 D per V!

 OKMC cells:

E .Safi, simumeet, 9 June 2016
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Method
Step 2: MD

27

Top-to-bottom multi-scaling:
OKMC's output was used to set up accurate 

substrate structures in MD

Making the MD structures:
 Instead of a fixed, uniform concentration, 

use D and V profiles given by OKMC
a) Create vacancies

b) Insert D atoms:

 According to depth profiles

 Accounting for D-per-V results

 Relax the system after each D 

T= 300K

E .Safi, simumeet, 9 June 2016
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MD
Irradiation runs

28

5 Å

T= 700K

E .Safi, simumeet, 9 June 2016

 D irradiation on Be: non cumulative (static) D 
impacts

 Substrates are ”in equilibrium”

 Less time consuming: impacts can be run in 
parallel

 More controlled conditions: constant 
cD/substrate morphology

 Ei = 10, 30, 50, 100, 150 and 200 eV

 T = 300, 400, 500, 600, 700 and 800 K

 Normal impacts to the surface, initiated 5 Å 
above the surface

 Cell size: 2 * 2.4 * 12.0 nm

 Periodic boundary conditions in x, y dimensions
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MD fed by KMC:
Results

29

E .Safi, simumeet, 9 June 2016

Total Be erosion
peaks at energies of
100 and 150eV with
increasing Tsurf
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Comparison of old and new results
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old

new

Somewhat lower yields 
with better D surface 
concentrations

Maximum at different 
energy

Max YBe
about 0.013

Max YBe
about 0.016
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MD fed by KMC:
Results

31

The fraction of Be atoms that are  sputtered as 
Be molecules:

 In agreement with JET
results [2]: the fraction of
Be eroded as BeD
decays with increasing
Tsurf

At Tsurf < 600K and E <
100 eV, the main eroded
species is BeD!

[2] S. Brezinsek et al., NF 54 (2014) 103001
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Summary and TODO:

 OKMC code parameterized for Be (first time ever!)

 OKMC results show a linear dependence of cD on cV

 At lower T, vacancies are filled with D atoms (up to 5), while at 

higher T, D atoms detrap from vacancy and occupy an interstitial 

site.

 MD results are quite sensitive to D content at the surface and Tsurf

 → Continue the D bombardment on Be cell : at least 3000 

impacts

 → Compare data to earlier cumulative Tsurf scans

E .Safi, simumeet, 9 June 2016
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Backup slides
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OLD Results on Be sputtering by D

D on Be non-cumulative run results:
Total Be yield (Energy, Temperature)
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OLD Results on Be sputtering by D

D on Be non-cumulative run results:
Total Be yield (Energy, Temperature)
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