Recent results on tungsten spectra obtained with a compact electron beam ion trap

> NAKAMURA Nobuyuki The Univ. of Electro-Communications JAPAN

Nov 19, 2018 Experimentalists Network Meeting IAEA, Vienna

Contents

Electron Beam Ion Trap, CoBIT
Recent studies

EUV and visible spectra for W^{q+} (q=6-13)
E3 transitions in Ag-like W²⁷⁺

Summary

CoBIT (compact EBIT)

Specificationse-beam energy 50 - 1000 eVe-beam current 20 mA (max)electron density 10⁹⁻¹⁰ cm⁻³ (typ)Magnetic field 0.2 T (max)Temperature 77 K (High-Tc SCM)

Experimental setup

Typical spectra of CoBIT

Contents

Electron Beam Ion Trap, CoBIT
Recent studies

EUV and visible spectra for W^{q+} (q=6-13)
E3 transitions in Ag-like W²⁷⁺

Summary

Why we study q=6-13?

Why we study q=6-13?

4f¹²5s²5p⁶ 4f¹³5s²5p⁵ 4f¹⁴5s²5p⁴

4f¹³5s¹5p⁶ 4f¹⁴5s¹5p⁵

4f¹¹5s²5p⁶5d¹ 4f¹²5s²5p⁵5d¹ 4f¹³5s²5p⁴5d¹ 4f¹⁴5s²5p³5d¹

4f¹²5s²5p⁵6s¹ 4f¹³5s²5p⁴6s¹ 4f¹⁴5s²5p³6s¹

Why we study q=6-13?

PRL 106, 210802 (2011)

PHYSICAL REVIEW LETTERS

week ending 27 MAY 2011

Electron-Hole Transitions in Multiply Charged Ions for Precision Laser Spectroscopy and Searching for Variations in α

J. C. Berengut, V. A. Dzuba, V. V. Flambaum, and A. Ong

School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia (Received 14 March 2011; published 27 May 2011)

tive to the grou	nd state	e for W ⁷⁺ (cm	⁻¹).	A #7+			
Configuration	J	Er	nergy	N'T			
		This work	[15]				
$4f^{13}5p^{62}F^{o}$	7/2	0	0	0			
	5/2	18 199	17 440	TABLE IV.	Energy levels	and sensitivity	coefficients (q) for
$4f^{14}5p^{52}P^{o}$	3/2	4351	800 (700)	W^{8+} (cm ⁻¹).	Energies betw	veen terms are un	ncertain at the level
	1/2	93 908	87 900 (70	$0 \sim 6000 \text{ cm}^{-1}$.			
	£ 1/		I MAR TH	Configuration	J	Energy	
				$4f^{14}5p^{43}P$	2	0	0
				$4f^{13}5p^{53}F$	4	6075	-81564
				$4f^{13}5p^{53}G$	3	6357	-81480
				$4f^{13}5p^{53}G$	5	11 122	-82880
				$4f^{13}5p^{53}F$	3	21 905	-66489

EUV spectra

EUV spectra

Visible spectra

Visible spectra

Contents

Electron Beam Ion Trap, CoBIT
Recent studies

EUV and visible spectra for W^{q+} (q=6-13)
E3 transitions in Ag-like W²⁷⁺

Summary

EUV spectra of W^{q+} (q=25-27)

I.P. 25+→26+: 784 eV 26+→27+: 833 eV

Examples of multipole radiations

Electric quadrupole (E2)
 [3d¹⁰]_{J=0} – [3d⁹4s]_{J=2} in Ni-like

Klapisch et al., PRL 41 403 (1978)

• Magnetic quadrupole (M2) $1 {}^{1}S_{0} - 2 {}^{3}P_{2}(x)$ in He-like

Beiersdorfer et al., PRA 46 3812 (1992)

Examples of multipole radiations

Magnetic octupole (M3)
 [3d¹⁰]_{J=0} – [3d⁹4s]_{J=3} in Ni-like

Beiersdorfer et al., PRL 67 2272 (1991)

E3 transition probability

Collisional radiative modelling

$$n_i = \frac{n_e \sum_{j \neq i} C_{ij} n_j + \sum_{j > i} A_{ij} n_j}{n_e \sum_{j \neq i} C_{ji} + \sum_{j < i} A_{ji}} \equiv \frac{C_{\rm in} + R_{\rm in}}{c_{\rm out} + r_{\rm out}} \equiv \frac{F_{\rm in}}{f_{\rm out}}$$

 n_i : fractional population of level i C_{ij} : electron impact (de)excitation rate coefficient A_{ij} : radiative transition rate n_e : electron density

included levels: 4d¹⁰4f, 4d¹⁰nl (n=5-6), 4d⁹4f², 4d⁹4f5l, 4d⁹5l², 4d⁸4f³, 4d⁸4f²5l

CRM results

E3 intensity = $n_{5s} \times A_{4f \leftarrow 5s}$

Population kinetics for the 5s level

cf) Safronova et al., PRA 68, 062505

Population kinetics for the 5s level

cf) Safronova et al., PRA 68, 062505

E3 intensity = $n_{5s} \times A_{E3}$

Contents

Electron Beam Ion Trap, CoBIT
Recent studies

EUV and visible spectra for W^{q+} (q=6-13)
E3 transitions in Ag-like W²⁷⁺

Summary

Summary

- CoBIT is a compact but powerful device for observation and identification of previously unreported lines of tungsten.
- EUV and visible spectra of W^{q+} (q=6-13) have been recently observed and compared with CRM calculations.
- In the EUV spectra of Ag-like W²⁷⁺, 4f-5s transitions have been identified as the first observation of E3 emission.
- Please search our work with "cobit tungsten" in Google scholar.

Google Scholar

cobit tungsten

Collaborators

Mita

M

NIES

Students in UEC

I. Murakami

C. Dong

D. Kato

H. A. Sakaue

西北印轮大学

X. Ding

F. Koike