Consultancy Meeting on The Comparison of Modelling Codes Used in Simulations of Neutral Beam Penetration and Photoemission for Fusion Energy Reactors 18 (Wed) – 21 (Fri) May 2022, IAEA Headquarters, Vienna, Austria

Progress on the KSTAR beam emission spectra research

Under the CRP on

Experimental validation of atomic data for motional Stark effect diagnostics

<u>Jinseok Ko</u>^{1,2}, Je Kil Lee^{1,2}, Juyoung Ko^{1,2}, Matthew Galante³, Fred Levinton³, Steve Scott⁴, Youngho Lee⁵

¹Korea Institute of Fusion Energy, Daejeon, Korea
²University of Science and Technology, Daejeon, Korea
³Nova Photonics, Princeton, NJ, USA
⁴Seoul National University, Seoul, Kore
⁵Commonwealth Fusion Systems, Cambridge, MA, USA

Scope of the project

Progress on the KSTAR beam emission spectra research

Under the CRP on

Experimental validation of atomic data for motional Stark effect diagnostics

- High-precision measurements of beam-emission spectra from KSTAR discharges
- Development of a spectra analysis tool with a modulated interface for atomic data

Origins and characteristics of polarized background light were identified

Origins and characteri background light were

KSTAR now has an addition MSE system to simultaneously measure background

(FE thu 19 may 2022, j ko, iaea-crp-neutral, remote (vienna, austria)

Collaboration under MIT/PPPL US DoE project

10 KSTAR

Cross-check for both systems gives reasonable agreements

Beam-into-gas calibration that gets around the secondary neutral effects

- Intra-shot pitch angle scan (vacuum field scan) without careful pressure control !).
- Suffered from spurious drift in the measured angle due to the secondary neutral emissions [Yuh et al. Rev. Sci. Instrum. 79 (2008) 10F523]
- This limit was addressed in the 2nd IAEA-CRP meeting.

- Intra-shot pressure scan at constant pitch angle profile (vacuum field profile).
- Did this at only a single vacuum-field profile in 2019 → not enough for calibration.
- Multiple vacuum-field profiles in 2020 → too much machine time (5 hrs per MSE).

- Took advantage of a long-pulse machine;
- Extended the pressure scan, utilizing its 'falling' phase (and a new vacuum field profile is formed meanwhile).
- Can cover two sets of vacuum field profiles within a shot → run time reduced by a factor of two.

Pressure dependence (2ndary neutrals) is clearly demonstrated.

- Took advantage of a long-pulse machine;
- Extended the pressure scan, utilizing its 'falling' phase (and a new vacuum field profile is formed meanwhile).
- Can cover two sets of vacuum field profiles within a shot → run time reduced by a factor of two.

Faraday effect is dominant. Filter system works fine.

Faraday effect is dominant. Filter system works fine.

16 **KSTAR**

Per sightline MSE signal source: NBI1-A

alog10(abs(true angle - measured angle)), NBI1-B as the source

KSTAR run time dedicated to atomic data benchamark study during 2020 campaign

Proposed by

O. Marchuk, Yu. Ralchenko, D. R. Schultz, Ph. Mertens

Motivation:

- Deviation of statistical populations in MSE atomic levels and line intensities still observed in many machines (JET, Alcator C-Mod etc).
- No experimental data of MSE intensities in helium plasmas

 No predictions and studies available for initial ITER
 plasmas.

Approach:

- Utilizing the KSTAR's capability to measure high-resolution MSE spectra, obtain good-quality MSE spectra in helium and D plasmas.
- Comparison with polarimetric MSE results

Marchuk et al, Plasma Phys. Control. Fusion 54 (2012) 095010 Ralchenko et al, Rev. Sci. Instrum. 83 (2012) 10D504

KSTAR run time dedicated to atomic data benchmark study during 2020 campaign

Spectral fit on MSE emission to infer vertical field at KSTAR

thu 19 may 2022, j ko, iaea-crp-neutral, remote (vienna, austria)

- Multi-Gaussian fit model on full energy component of MSE spectrum includes:
 - Asymmetry around σ 0 dependent of channel position.
 - Free parameters with constraints: relative intensities of MSE multiplets, Stark splitting, line broadening.
 - Fixed parameters: Bt, beam energy, viewing angle.

28 👖 笋 T

- Linear background (including FIDA).
- 'Forward' initialization
- Inferred Bv's are compared with that from polarimetric MSE.

Spectral fit on MSE emission to infer vertical field at KSTAR at two ne values

Reasonable agreement between polarimetric and spectral MSE's

- Bv's inferred from spectral MSE are overplotted with those from polarimetric MSE
- With slight offsets, Bv's from spectral MSE exhibit similar sensitivity as those from polarimetric MSE over two different Bv profiles.
- Next steps:
 - Stabilize (automate) establishing initial conditions.
 - Increase the number of 'spectral' channels.
 - Apply and test more various plasma discharges (ITB etc).
 - Cases of multiple ion-source injections? Will be very challenging.

Zoletnik et al. Nucl. Fusion, To be submitted

Last time, we mentioned the observation of main-ion CX components

...which qualitatively broaden during high confinement regimes

Multi-Gaussian fit for main-ion CX interpretation done in addition to MSE fits

Multi-Gaussian fit for main-ion CX interpretation done in addition to MSE fits.

Multi-Gaussian fit for main-ion CX interpretation done in addition to MSE fits.

(FE thu 19 may 2022, j ko, iaea-crp-neutral, remote (vienna, austria)

- Rather challenging fit because the beam-off thermal components are included.
 - Cross-section distortion and halo not included.
 - Impurity-based CX data can be used as initial conditions.
- Full-channel measurements planned to confirm pedestal structures etc.

36 **KSTAR**

Carbon density profiles obtained for the first time in KSTAR

- Last time, a brief introduction was made on the application of the ALCBEAM* code to KSTAR
- ALCBEAM has been modified (and renamed as KSTARBEAM) for the KSTAR beam configs.

$$n_{C} = \frac{4\pi\epsilon_{CX}^{\lambda}}{\sum_{k}\sum_{j} < \sigma \nu >_{j,k}^{\lambda} \int n_{b_{j,k}}(l)dl}$$

 ϵ_{CX}^{λ} : the charge exchange brightness at wavelength λ j: beam energy components (E, E/2, E/3) k: beam atoms excited levels $< \sigma v >_{j,k}^{\lambda}$: the effective cross-section rate (from ADAS) dl: the path length of diagnostic's line of sight through the beam

$$n_{b_j}(z) = n_{b_j}(0) \exp\left(-\int \left(n_e(z)\sigma_{S_j}\right) dz\right)$$

z: distance along the beam trajectory $n_{b_j}(0)$: the initial neutral beam density at the plasma boundary σ_{S_j} : the effective beam stopping cross-section

J K Lee et al. AIP Advanced, 2022

Impurity accumulation during ELM-free phase has been observed

- KSTAR plasmas can suppress edge-localized mode (ELM) by applying the resonant magnetic perturbation.
- Carbon density profiles confirm the impurity accumulation during ELM-free while electrons are pumped out.

🔁 thu 19 may 2022, j ko, iaea-crp-neutral, remote (vienna, austria)

J K Lee et al. AIP Advanced, 2022

Future plans

- Retry the MSE spectrum measurements in 2022 KSTAR campagin with Te and ne measurements, and narrow slits (lots of nlm-resolved data!) – Dedicated run time allocated in July
- Apply the main-ion CX fit to recent (and upcoming) high-Ti KSTAR plasmas
- Reliable initialization in the MSE and main-ion CX fits
- Extend the spectral MSE to various advanced operation regimes (ITB etc) and the multi-ion-source injection cases and compare it with polarimetric MSE
- Revist the spectrum measurements from the gas with the beam and the field (for atomic physics data collections)
- Utilization of (Comparison with) NOMAD thu 19 may 2022, j ko, iaea-crp-neutral, remote (vienna, austria)

Shot plan*: 7 shots with NB1A, NB2B, SMBI

• Ref: #29449**

- ✓ Obtained by J W Juhn in 2021
- ✓ 0.7 MA with SMBI, NB1A/B = 80/85 keV
- ✓ Record high f_{GW} & ne (80% & 8.5e19)

• Initial modifications

- ✓ NB1A = 90 keV
- NB2B replaces NB1B to avoid beam spectral overlap
- ✓ Keep the fueling scheme

• MSE and other hardware

- ✓ MSE 3 channels to spectrometer/CCD
- ✓ Te and ne profiles necessary (TS, ECE)
- ✓ SMBI

- Shot 1: Re-achieve #29449
- Shot 2 / 3: NB1A = 90 keV / 60 keV
- Shot 4 / 5: NB1A = 90 keV / 60 keV with Ar 1% (Challenge to even higher f_{GW})
- Shot 6: Ip = 1 MA, NB1A = 90 keV
- Shot 7: lp = 1 MA, NB1A = 90 keV, Bt = 3.5T

**Alternative in case of no SMBI: #28844 (NB1A/B/C, NB2C, f_{GW} = 74%)

- Expectations if successful:
 - ✓ Obtain unique atomic physics data (main purpose)
 - \checkmark Obtain dataset for spectral MSE for ITER application
 - \checkmark Pursue record ne/n_{GW} in KSTAR

29449

28844

Future plans

- Retry the MSE spectrum measurements in 2022 KSTAR campagin with Te and ne measurements, and narrow slits (lots of nlm-resolved data!) – Dedicated run time allocated in July
- Apply the main-ion CX fit to recent (and upcoming) high-Ti KSTAR plasmas
- Reliable initialization in the MSE and main-ion CX fits
- Extend the spectral MSE to various advanced operation regimes (ITB etc) and the multi-ion-source injection cases and compare it with polarimetric MSE
- Revist the spectrum measurements from the gas with the beam and the field (for atomic physics data collections)
- Utilization of (Comparison with) NOMAD thu 19 may 2022, j ko, iaea-crp-neutral, remote (vienna, austria)

