Progress on the KSTAR beam emission spectra research

Under the CRP on
Experimental validation of atomic data for motional Stark effect diagnostics

Jinseok Ko\(^{1,2}\), Je Kil Lee\(^{1,2}\), Juyoung Ko\(^{1,2}\), Matthew Galante\(^{3}\), Fred Levinton\(^{3}\), Steve Scott\(^{4}\), Youngho Lee\(^{5}\)

\(^{1}\)Korea Institute of Fusion Energy, Daejeon, Korea
\(^{2}\)University of Science and Technology, Daejeon, Korea
\(^{3}\)Nova Photonics, Princeton, NJ, USA
\(^{4}\)Seoul National University, Seoul, Korea
\(^{5}\)Commonwealth Fusion Systems, Cambridge, MA, USA
Scope of the project

Progress on the KSTAR beam emission spectra research

Under the CRP on Experimental validation of atomic data for motional Stark effect diagnostics

• High-precision measurements of beam-emission spectra from KSTAR discharges
• Development of a spectra analysis tool with a modulated interface for atomic data
Outline of the CRP activities

High-resolution spectrum measurements ($\Delta \lambda \leq 0.05$ nm)

- Mirror reflections
- Faraday rotation
- Polarized background
- Multi-ion-source injection

Spectral analysis

Existing (conventional) MSE
- Input for model validation
- Comparison with spectral analyses

Atomic models (NOMAD, ADAS etc)
Outline of the CRP activities

Year 1 (2017)

- Mirror reflections
- Faraday rotation
- Polarized background
- Multi-ion-source injection

High-resolution spectrum measurements ($\Delta \lambda \leq 0.05$ nm)

Spectral analysis

Atomic models (NOMAD, ADAS etc)

Existing (conventional) MSE
- Input for model validation
- Comparison with spectral analyses
Outline of the CRP activities

Year 1 (2017)
- Mirror reflections
- Faraday rotation
- Polarized background
- Multi-ion-source injection
- Beam penetration (ALCBEAM)
- Main ion CX (Prelim.)

Year 2 (2018)
- High-resolution spectrum measurements ($\Delta \lambda \leq 0.05$ nm)
- Atomic models (NOMAD, ADAS etc)
- Spectral analysis
- Existing (conventional) MSE
 - Input for model validation
 - Comparison with spectral analyses
Outline of the CRP activities

Year 1 (2017)
- Mirror reflections
- Faraday rotation
- Polarized background
- Multi-ion-source injection

Year 2 (2018)
- Beam penetration (ALCBEAM)
- Main ion CX (Prelim.)

Year 3 and beyond (2019 -)
- Existing (conventional) MSE
 - Input for model validation
 - Comparison with spectral analyses

High-resolution spectrum measurements ($\Delta \lambda \leq 0.05$ nm)

Atomic models (NOMAD, ADAS etc)

Beam penetration (KSTARBEAM, $n_c(r)$)

Main ion CX
Outline of the CRP activities

Year 1 (2017)
- Mirror reflections
- Faraday rotation
- Polarized background
- Multi-ion-source injection
- Beam penetration (ALCBEAM)
- Main ion CX (Prelim.)

Year 2 (2018)
- Beam penetration (KSTARBEAM, n_c(r))
- Main ion CX

Year 3 and beyond (2019 -)
- Input for model validation
- Comparison with spectral analyses
Origins and characteristics of polarized background light were identified.
Origins and characteristics of polarized background light were identified.

KSTAR now has an addition MSE system to simultaneously measure background.

Collaboration under MIT/PPPL US DoE project
Cross-check for both systems gives reasonable agreements.

- Odd channel fibers to K-MSE
- Even channel fibers to MSE-BP

KSTAR MSE
Since 2015

MSE-Background polychromator (BP)

KSTAR MSE
Single-detector type
(Conventional)

MSE-BP
Since 2019

Pitch Angle (deg)

R (m)

KTRMSE
MSE-BP

t = 2.5 s

1.8 1.9 2.0 2.1 2.2

-10 -8 -6 -4 -2 0 2

thu 19 may 2022, j ko, iaea-crp-neutral, remote (vienna, austria)
Outline of the CRP activities

Year 1 (2017)
- Mirror reflections
- Faraday rotation
- Polarized background
- Multi-ion-source injection
- Beam penetration (ALCBEAM)
- Main ion CX (Prelim.)

Year 2 (2018)
- Beam penetration
- Main ion CX (Prelim.)
- Input for model validation
- Comparison with spectral analyses

Year 3 and beyond (2019 -)
- Atomic models (NOMAD, ADAS etc)
- Beam penetration (KSTARBEAM, n_c(r))
- Main ion CX

High-resolution spectrum measurements ($\Delta \lambda \leq 0.05$ nm)

Spectral analysis

Existing (conventional) MSE
Beam-into-gas calibration that gets around the secondary neutral effects

- Intra-shot pitch angle scan (vacuum field scan) without careful pressure control.
- This limit was addressed in the 2nd IAEA-CRP meeting.

- Intra-shot pressure scan at constant pitch angle profile (vacuum field profile).
- Did this at only a single vacuum-field profile in 2019 → not enough for calibration.
- Multiple vacuum-field profiles in 2020 → too much machine time (5 hrs per MSE).
- Took advantage of a long-pulse machine;
- Extended the pressure scan, utilizing its ‘falling’ phase (and a new vacuum field profile is formed meanwhile).
- Can cover two sets of vacuum field profiles within a shot → run time reduced by a factor of two.
Pressure dependence (2ndary neutrals) is clearly demonstrated.

- Intra-shot pitch angle scan (vacuum field scan) without careful pressure control.
- This limit was addressed in the 2nd IAEA-CRP meeting.

- Intra-shot pressure scan at constant pitch angle profile (vacuum field profile).
- Did this at only a single vacuum-field profile in 2019 → not enough for calibration.
- Multiple vacuum-field profiles in 2020 → too much machine time (5 hrs per MSE).
- Took advantage of a long-pulse machine; extended the pressure scan, utilizing its ‘falling’ phase (and a new vacuum field profile is formed meanwhile).
- Can cover two sets of vacuum field profiles within a shot → run time reduced by a factor of two.
Faraday effect is dominant. Filter system works fine.

BT: 1.9 2.2 2.5 2.7

MSE polarization angle (deg)
22161, Ch07 (TF only)

pressure (mbar)

2018 data (high p)

2021b2g, Ch19, nbi1b085keV (3rd-order fit)

vacuum pitch (deg)

mse angle - vacuum pol (deg)
Faraday effect is dominant. Filter system works fine.

<table>
<thead>
<tr>
<th>Pressure (mbar)</th>
<th>MSE angle - vacuum pol (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>-2</td>
</tr>
<tr>
<td>90</td>
<td>-1</td>
</tr>
<tr>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>94</td>
<td>1</td>
</tr>
</tbody>
</table>

MSE polarization angle (deg)
- 22161, Ch07 (TF only)

Pressure (mbar)
- 10^{-5}
- 10^{-4}
- 10^{-3}
- 10^{-2}

BT
- 1.9
- 2.2
- 2.5
- 2.7

Change in π_3 (nm)
- 0.14 nm
- 0.04 nm

2018 data (high p)
- 1.8 (90k)
- 2.5 (90k)
- 3.2 (90k)
- 1.8 (85k,clean)
Outline of the CRP activities

Year 1 (2017)
- Mirror reflections
- Faraday rotation
- Polarized background
- Multi-ion-source injection

Year 2 (2018)
- Beam penetration (ALCBEAM)
- Main ion CX (Prelim.)

Year 3 and beyond (2019 -)

Spectral analysis

High-resolution spectrum measurements ($\Delta \lambda \leq 0.05$ nm)

Atomic models (NOMAD, ADAS etc)

Existing (conventional) MSE
- Input for model validation
- Comparison with spectral analyses

Beam penetration (KSTARBEAM, $n_e(r)$)

Main ion CX
Per sightline
MSE signal source: NBI1-A

Filter functions

\[f_A(\lambda) \]

\[I_{\pi,A}^A = \int \sum_i \sum_C I_{i\pi}^{A,C} f_A(\lambda) d\lambda \]

\[I_{\sigma,A}^A = \int \sum_j \sum_C I_{j\sigma}^{A,C} f_A(\lambda) d\lambda \]

\[I_{\pi,A}^B = \int \sum_i \sum_C I_{i\pi}^{B,C} f_A(\lambda) d\lambda \]

\[I_{\sigma,A}^B = \int \sum_j \sum_C I_{j\sigma}^{B,C} f_A(\lambda) d\lambda \]

MSE spectra

\[I_{i\pi}^{S,C}, I_{j\sigma}^{S,C} \]

\[i = \pm 2, \pm 3, \pm 4 \]

\[j = 0, \pm 1 \]

\[S = A \text{ or } B \]

\[C = \text{ full, half, or third} \]

Filter functions

\[f_A(\lambda) \]

\[I_{\pi,A}^A = \int \sum_i \sum_C I_{i\pi}^{A,C} f_A(\lambda) d\lambda \]

\[I_{\sigma,A}^A = \int \sum_j \sum_C I_{j\sigma}^{A,C} f_A(\lambda) d\lambda \]

\[I_{\pi,A}^B = \int \sum_i \sum_C I_{i\pi}^{B,C} f_A(\lambda) d\lambda \]

\[I_{\sigma,A}^B = \int \sum_j \sum_C I_{j\sigma}^{B,C} f_A(\lambda) d\lambda \]

Pitch angle profiles

\[\gamma_A, \gamma_B \]

2nd and 3rd elements of the Stokes vector

\[Q_A = I_{\pi,A}^A \cos(2\gamma_A) + I_{\sigma,A}^A \cos(2\gamma_A + \pi) + I_{\pi,A}^B \cos(2\gamma_B) + I_{\sigma,A}^B \cos(2\gamma_B + \pi) \]

\[U_A = I_{\pi,A}^A \sin(2\gamma_A) + I_{\sigma,A}^A \sin(2\gamma_A + \pi) + I_{\pi,A}^B \sin(2\gamma_B) + I_{\sigma,A}^B \sin(2\gamma_B + \pi) \]

\[\gamma_A^m = 0.5 \tan \left(\frac{U_A}{Q_A} \right) \]

\[\Delta \gamma_A = \gamma_A - \gamma_A^m \]
As the filter rotates, the peak transmission and width distort.
2021 low and high mse angle profiles

Two reference profiles (low & high)

Low: 40 shots
High: 77 shots
alog10(abs(true angle - measured angle)), NBI1-B as the source

2.2T, Ch02, low & high pitch profiles

Safer regime

Allowed error
alog10(abs(true angle - measured angle)), NBI1-B as the source

1.5T, Ch01, low / high pitch profile
1.5T, Ch12, low / high pitch profile
1.5T, Ch23, low / high pitch profile

2.2T, Ch01, low / high pitch profile
2.2T, Ch12, low / high pitch profile
2.2T, Ch23, low / high pitch profile

2.9T, Ch01, low / high pitch profile
2.9T, Ch12, low / high pitch profile
2.9T, Ch23, low / high pitch profile
Outline of the CRP activities

Year 1 (2017)
- Mirror reflections
- Faraday rotation
- Polarized background
- Multi-ion-source injection
- Beam penetration (ALCBEAM)
- Main ion CX (Prelim.)

Year 2 (2018)
- High-resolution spectrum measurements ($\Delta \lambda \leq 0.05$ nm)
- Spectral analysis
- Atomic models (NOMAD, ADAS etc)

Existing (conventional) MSE
- Input for model validation
- Comparison with spectral analyses

Year 3 and beyond (2019 -)
- Beam penetration (KSTARBEAM, $n_c(r)$)
- Main ion CX
KSTAR run time dedicated to atomic data benchmark study during 2020 campaign

Proposed by
O. Marchuk, Yu. Ralchenko, D. R. Schultz, Ph. Mertens

Motivation:
• Deviation of statistical populations in MSE atomic levels and line intensities still observed in many machines (JET, Alcator C-Mod etc).
• No experimental data of MSE intensities in helium plasmas – No predictions and studies available for initial ITER plasmas.

Approach:
• Utilizing the KSTAR’s capability to measure high-resolution MSE spectra, obtain good-quality MSE spectra in helium and D plasmas.
• Comparison with polarimetric MSE results

KSTAR run time dedicated to atomic data benchmark study during 2020 campaign

- 3 out of 25 conventional MSE channels connected to spectrometer (Core / Mid-minor / Edge).
- One shot with density scan at 3.5T, 90 keV deuterium beam (Originally 4 shots given).
- No Te & ne measurements! (Apology to Sascha)
Spectral fit on MSE emission to infer vertical field at KSTAR

• Multi-Gaussian fit model on full energy component of MSE spectrum includes:
 – Asymmetry around σ_0 dependent of channel position.
 – Free parameters with constraints: relative intensities of MSE multiplets, Stark splitting, line broadening.
 – Fixed parameters: B_t, beam energy, viewing angle.
 – Linear background (including FIDA).
 – ‘Forward’ initialization

• Inferred B_v’s are compared with that from polarimetric MSE.
Spectral fit on MSE emission to infer vertical field at KSTAR at two ne values

25279, C2, 3.00-3.35s
Goodness-of-fit: 16.7
Bz = 0.0547 +/- 0.0082T

25279, C2, 7.00-7.35s
Goodness-of-fit: 14.9
Bz = 0.0691 +/- 0.0104T

25279, C15, 3.00-3.35s
Goodness-of-fit: 32.2
Bz = 0.2972 +/- 0.0059T

25279, C15, 7.00-7.35s
Goodness-of-fit: 32.6
Bz = 0.3138 +/- 0.0063T

25279, C23, 3.00-3.35s
Goodness-of-fit: 19.4
Bz = 0.2773 +/- 0.0055T

25279, C23, 7.00-7.35s
Goodness-of-fit: 14.5
Bz = 0.2616 +/- 0.0052T

ne = 1.8e19/m^3
ne = 3.5e19/m^3

Measurement
Total fit
σ
π
Background
Reasonable agreement between polarimetric and spectral MSE’s

- Bv’s inferred from spectral MSE are overplotted with those from polarimetric MSE
- With slight offsets, Bv’s from spectral MSE exhibit similar sensitivity as those from polarimetric MSE over two different Bv profiles.

Next steps:
- Stabilize (automate) establishing initial conditions.
- Increase the number of ‘spectral’ channels.
- Apply and test more various plasma discharges (ITB etc).
- Cases of multiple ion-source injections? Will be very challenging.

Zoletnik et al. Nucl. Fusion, To be submitted
Outline of the CRP activities

Year 1 (2017)
- Mirror reflections
- Faraday rotation
- Polarized background
- Multi-ion-source injection
- Beam penetration (ALCBEAM)
- Main ion CX (Prelim.)

Year 2 (2018)

High-resolution spectrum measurements ($\Delta \lambda \leq 0.05$ nm)

Spectral analysis

Atomic models (NOMAD, ADAS etc)

Existing (conventional) MSE
- Input for model validation
- Comparison with spectral analyses

Year 3 and beyond (2019 -)

Beam penetration (KSTARBEAM, $n_e(r)$)

Main ion CX
Last time, we mentioned the observation of main-ion CX components.
...which qualitatively broaden during high confinement regimes
Multi-Gaussian fit for main-ion CX interpretation done in addition to MSE fits

Thermal D_α & H_α
Main-ion D_α & H_α
FIDA + Background
Total fit
Experimental data

18739, F4, C20, 1.00-1.35s, 93/-3/0V, 2175mm
Ti = 0.364483 +/- 0.00682312 keV
Vi = 37.5817 +/- 0.547588 km
rcs = 18.112

18739, F6, C20, 2.00-2.35s, 100/-3/0V, 2175mm
Ti = 1.6819 +/- 0.028656 keV
Vi = 166.311 +/- 1.49847 km
rcs = 15.524

18739, F7, C20, 2.50-2.85s, 78/-3/0V, 2175mm
Ti = 0.137170 +/- 0.00138970 keV
Vi = 8.00000 +/- -0.000000 km
rcs = 30.030
Multi-Gaussian fit for main-ion CX interpretation done in addition to MSE fits.

18739, F4, C1, 1.00-1.35s, 93/-3/0V, 1748mm

Ti = 0.843571 +/- 0.00867041 keV
Vi = 50.5295 +/- 1.62785 km
rcs = 5.5560

18739, F6, C1, 2.00-2.35s, 100/-3/0V, 1748mm

Ti = 1.44941 +/- 0.108304 keV
Vi = 126.451 +/- 4.20845 km
rcs = 4.7311

18739, F7, C1, 2.50-2.85s, 78/-3/0V, 1748mm

Ti = 0.778592 +/- 0.00631016 keV
Vi = 35.9013 +/- 0.737629 km
rcs = 11.825

Bt = 1.79 T
Multi-Gaussian fit for main-ion CX interpretation done in addition to MSE fits.

- Rather challenging fit because the beam-off thermal components are included.
- Cross-section distortion and halo not included.
- Impurity-based CX data can be used as initial conditions.
- Full-channel measurements planned to confirm pedestal structures etc.
Outline of the CRP activities

Year 1 (2017)
- Mirror reflections
- Faraday rotation
- Polarized background
- Multi-ion-source injection
- Beam penetration (ALCBEAM)
- Main ion CX (Prelim.)

Year 2 (2018)
- High-resolution spectrum measurements ($\Delta \lambda \leq 0.05$ nm)
- Spectral analysis
- Existing (conventional) MSE
 - Input for model validation
 - Comparison with spectral analyses

Year 3 and beyond (2019 -)
- Atomic models (NOMAD, ADAS etc)
- Beam penetration (KSTARBEAM, $n_c(r)$)
- Main ion CX
Carbon density profiles obtained for the first time in KSTAR

- Last time, a brief introduction was made on the application of the ALCBEAM* code to KSTAR
- ALCBEAM has been modified (and renamed as KSTARBEAM) for the KSTAR beam configs.

$$n_C = \frac{4\pi \epsilon_{CX}^\lambda}{\sum_k \sum_j <\sigma_v>_{j,k} \int n_{b,j,k}(l)dl}$$

ϵ_{CX}^λ: the charge exchange brightness at wavelength λ

j: beam energy components ($E, E/2, E/3$)

k: beam atoms excited levels

$<\sigma_v>_{j,k}$: the effective cross-section rate (from ADAS)

dl: the path length of diagnostic’s line of sight through the beam

$$n_{b,j}(z) = n_{b,j}(0) \exp \left(- \int (n_e(z)\sigma_{S,j}) dz \right)$$

z: distance along the beam trajectory

$n_{b,j}(0)$: the initial neutral beam density at the plasma boundary

$\sigma_{S,j}$: the effective beam stopping cross-section

J K Lee et al. AIP Advanced, 2022
Impurity accumulation during ELM-free phase has been observed

- KSTAR plasmas can suppress edge-localized mode (ELM) by applying the resonant magnetic perturbation.
- Carbon density profiles confirm the impurity accumulation during ELM-free while electrons are pumped out.

J K Lee et al. AIP Advanced, 2022
Future plans

- Retry the MSE spectrum measurements in 2022 KSTAR campaign with Te and ne measurements, and narrow slits (lots of nlm-resolved data!) – Dedicated run time allocated in July
- Apply the main-ion CX fit to recent (and upcoming) high-Ti KSTAR plasmas
- Reliable initialization in the MSE and main-ion CX fits
- Extend the spectral MSE to various advanced operation regimes (ITB etc) and the multi-ion-source injection cases and compare it with polarimetric MSE
- Revist the spectrum measurements from the gas with the beam and the field (for atomic physics data collections)
- Utilization of (Comparison with) NOMAD
Shot plan*: 7 shots with NB1A, NB2B, SMBI

• Ref: #29449**
 ✓ Obtained by J W Juhn in 2021
 ✓ 0.7 MA with SMBI, NB1A/B = 80/85 keV
 ✓ Record high f_{GW} & ne (80% & 8.5e19)

• Initial modifications
 ✓ NB1A = 90 keV
 ✓ NB2B replaces NB1B to avoid beam spectral overlap
 ✓ Keep the fueling scheme

• MSE and other hardware
 ✓ MSE 3 channels to spectrometer/CCD
 ✓ Te and ne profiles necessary (TS, ECE)
 ✓ SMBI

• Shot 1: Re-achieve #29449
• Shot 2 / 3: NB1A = 90 keV / 60 keV
• Shot 4 / 5: NB1A = 90 keV / 60 keV with Ar 1%
 (Challenge to even higher f_{GW})
• Shot 6: Ip = 1 MA, NB1A = 90 keV
• Shot 7: Ip = 1 MA, NB1A = 90 keV, Bt = 3.5T

**Alternative in case of no SMBI: #28844 (NB1A/B/C, NB2C, f_{GW} = 74%)

• Expectations if successful:
 ✓ Obtain unique atomic physics data (main purpose)
 ✓ Obtain dataset for spectral MSE for ITER application
 ✓ Pursue record ne/n_{GW} in KSTAR
SMBI Injection Test (#29449)

From 2021 KSTAR Summary
by J W Juhn
0.7 MA Discharge (#28844)

From 2021 KSTAR Summary by J W Juhn

$F_{GW} = 0.74$

Slice & Stack Cartoon
Toroidal Plasma

CH. #1
#2
#3
#4
#5

Peak Density Check
1.09×10

$R = [1.78, 1.91]$
Future plans

- Retry the MSE spectrum measurements in 2022 KSTAR campagin with Te and ne measurements, and narrow slits (lots of nlm-resolved data!) – Dedicated run time allocated in July

- Apply the main-ion CX fit to recent (and upcoming) high-Ti KSTAR plasmas

- Reliable initialization in the MSE and main-ion CX fits

- Extend the spectral MSE to various advanced operation regimes (ITB etc) and the multi-ion-source injection cases and compare it with polarimetric MSE

- Revist the spectrum measurements from the gas with the beam and the field (for atomic physics data collections)

- Utilization of (Comparison with) NOMAD