Classical and semiclassical calculations for ion-atom collision

systems of relevance to neutral beams in fusion plasmas.

Clara Illescas

UNIVERSIDAD AUTÓNOMA DE MADRID

May 18 2022

Consultancy Meeting on the Evaluation of Data for Neutral Beam Modelling

- 2 Brief description of the methods
- 3 Results for $Be^{4+} + H(2s)$
- 4 Results for $Be^{4+} + H(2p)$
- **5** Results for $Be^{4+} + H(1s)$
- 6 Results for $H^+ + Ar$ collisions

Motivation

Purpose I.: Calculation of total and *n*, *l*-partial cross sections for excitation, electron capture and total ionization of collisions of Be^{4+} ions with neutral hydrogen atoms. Three collision energies were selected: 20, 100, and 500 keV/u. Purpose II.: Code Comparison Workshop with regards to the accuracy of the cross sections.

The group at UAM has been working in Be^{4+} collisions with:

- H(2s), H(1s) employing the CTMC¹ and GTDSE² methods.
- H(2p) employing the CTMC method.

¹Classical Trajectory Monte Carlo

²GridTDSE, numerical solution of the Time Dependent Schrödinger Equation

Reactions and processes considered:

Be⁴⁺ + H → Be³⁺(nl) + H⁺
Excitation of the target: Be⁴⁺ + H → Be⁴⁺ + H(nl)
Ionization: Be⁴⁺ + H → Be⁴⁺ + H⁺ + e⁻

H (1s)				H (2s)				Н (2р)			
processes	1	2	3	processes	1	2	3	processes	1	2	3
стмс	~	~	~	стмс	~	~	~	СТМС	~	~	~
GTDSE	~	~		GTDSE	 ✓ 	 ✓ 		GTDSE			

Both initial dristributions, microcanonical and hydrogenic, have been considered in the CTMC calculations.

Brief description of the methods

Impact parameter approximation

At the energies considered (E \geq 1 keV/u), IPA is valid.

- The projectile follows rectilinear trajectories $\boldsymbol{R} = \boldsymbol{b} + \boldsymbol{v}t$
- The electronic hamiltonian is: $H_{el} = -\frac{1}{2}\nabla_r^2 + V_{H} + V_{Be}$

Brief description of the methods

CTMC: Classical Trajectory Monte Carlo method

- The electronic motion is described by a classical distribution function $\rho(\mathbf{r}, \mathbf{p})$:
 - Microcanonical (standard): exact energy of the quantum one.
 - $\bullet \quad \text{Hydrogenic: linear combination of \mathcal{N} microcanonicals with average energy close to the quantum.}$
- The Hamilton equations are integrated for each electron trajectory $[N \approx 2 \cdot 10^6]$.
- The energy criterion is applied at t_{fin} to disclose each process: i, c, e
- Becker & McKellar binning to partion the classical phase space into exclusive subespaces {n, l}
- Electron probabilities: are obtained from the asymptotic values of the classical distribution function: $P^{i,c,e}(v,b) = \int dr \int dp \rho^{i,c,e}(r, p, v, b, t_{fin})$
- Total cross sections: $\sigma^{i,c,e}(v) = 2\pi \int_0^\infty db \, b \, P^{i,c,e}(v,b)$

GTDSE: Grid time-dependent Schrödinger equation method

- Numerical solution of the time-dependent Schrödinger equation: Ψ is evaluated at the points of a 3D cartesian lattice.
- The spatial integration is obtained by applying finite-difference method and time integration by iteratively applying the second-order difference method (SOD).
- Grid densities: $\Delta_q = q_{i+1} q_i$ for testing precision: $\Delta_q = 0.2$ -0.05 (a.u.)
- The extension of the grid is a broad box: $-L_{max} \le x, z \le L_{max}$ and $0 \le y \le L_{max}$ [$L_{max} = 40$ or 80 a₀ depending of the target].
- Electron probabilities: $P_{nlm} = P_{nlm}^{\mathbf{H},\mathbf{Be}} = \lim_{t \to \infty} \left| \langle \Phi_{nlm}^{\mathbf{H},\mathbf{Be}} | \Psi \rangle \right|^2$
- The integral cross sections for excitation and capture: $\sigma_{nlm} = 2\pi \int_0^\infty b P_{nlm} db$,

CM neutral 2022 Results for $Be^{4+} + H(2s)$

$Be^{4+} + H(2s)$ collisions

Recent publications:

- Jorge et al., Phys. Rev. A 105 (2022) → h,m-CTMC and GTDSE nl-partial EC and EXC.
- Icaeian & Tökési, Eur. Phys. J. D. 75 (2021) → m-CTMC and QTMC-KW H(2lm) targets, EC.
- Igenbergs et al., J. Phys. B 42 (2009) → AOCC nl-partial EC.

n-partial excitation cross sections: $Be^{4+} + H(2s) \rightarrow Be^{4+} + H(n)$

 $(- \bullet -)$, GTDSE calculations $[n_{max} = 5]$; m-CTMC; \blacktriangle , h-CTMC.

CM neutral 2022

Results for $Be^{4+} + H(2s)$

n, *l*-partial excitation: $Be^{4+} + H(2s) \rightarrow Be^{4+} + H(nl)$ E=20 keV/u

(- • -), GTDSE; ■, m-CTMC; ▲, h-CTMC.

n-partial electron capture cross sections: $Be^{4+} + H(2s) \rightarrow Be^{3+}(n) + H^+$

 $(- \bullet -)$, GTDSE calculations $[n_{max} = 11]$; \blacksquare , m-CTMC; \blacktriangle , h-CTMC.

CM neutral 2022 Results for $Be^{4+} + H(2s)$

n, *l*-partial electron capture: $Be^{4+} + H(2s) \rightarrow Be^{3+}(nl) + H^+ = 20 \text{ keV/u}$

(- • -), GTDSE; ■, m-CTMC; ▲, h-CTMC.

CM neutral 2022 Results for $Be^{4+} + H(2s)$

Total cross sections for excitation, capture and ionization in $Be^{4+} + H(2s)$

CM neutral 2022 Results for $Be^{4+} + H(2p)$

Total cross sections for excitation, capture and ionization in $Be^{4+} + H(2p)$

CM neutral 2022 Results for $Be^{4+} + H(1s)$

$Be^{4+} + H(1s)$ collisions

Recent publications:

- Jorge et al., Phys. Rev. A 94 (2016) → h,m-CTMC and GTDSE nl-partial EC.
- Icaeian & Tökési, Atoms 8 (2020) → m-CTMC and QTMC-KW 2/-partial excitation.
- Antonio et al., J. Phys. B 54 (2021) → WP-CCC nl-partial and total EC.
- Delibasic et al., Atomic Data and Nuclear Data Tables $139 (2021) \rightarrow CDW nl$ -partial and total EC.

n-partial electron capture cross sections: $Be^{4+} + H(1s) \rightarrow Be^{3+}(n) + H^+$

(- • -), GTDSE; ▲, h-CTMC; ▶, WP-CCC; ▼, AOCC.

CM neutral 2022 Results for $Be^{4+} + H(1s)$

n, *l*-partial electron capture: $Be^{4+} + H(1s) \rightarrow Be^{3+}(nl) + H^+ = 20 \text{ keV/u}$

CM neutral 2022 Results for $Be^{4+} + H(1s)$

Total cross sections for electron capture in $Be^{4+} + H(1s)$

Total cross sections for ionization and electron capture in $Be^{4+} + H(1s)$

 $(\cdot \bullet \cdot \cdot)$, h-CTMC; $(- \bullet -)$, WP-CCC from Antonio *et al.* J Phys. B **54** (2021); $(-\phi-)$ CDW TEC from Delibasic *et al.*, Atomic Data and Nucl. Data Tables **139** (2021).

CM neutral 2022

Results for H^+ + Ar collisions

$H^+ + Ar$ collisions

Study of collisions of protons with neutral argon beams^a

- We have implemented a new approach: the switching-CTMC method designed to classically treat two-active electron systems^b to calculate SI, SC and DC cross sections for $E \ge 10$ keV.
- We have applied a semiclassical method with an expansion in terms of molecular functions (MFCC) to calculate SC and DC cross sections.

^aJorge et al., J. Phys. Chem A **122** (2018)

^b Jorge *et al.*, Phys. Rev. A **94** (2016)

Our results: (——), MFCC (semiclassical Molecular Functions) and (- - - -), switching-CTMC with IEVM interpretation compared with different sets of experiments.

Results for H^+ + Ar collisions

(----), MFCC results; (—), s-CTMC with IEVM interpretation. Experimental results: (\blacktriangleright), Afrosimov *et al.*; (\Box), Williams *et al.*; (\diamond), Toburen *et al.*. Previous calculations: ($\times \cdots$), Martinez *et al.*, Phys. Rev. A 78,062715 (2008); (* ···) Wang *et al.* Phys. Lett. 375, 3290 (2011); (+ ···) Fremont J. Phys. B 49, 065206 (2016).

Results for H^+ + Ar collisions

Total cross sections for electron production in H^+ + Ar collisions

Switching-CTMC calculations for electron production (SI+DI+TI): (- \bullet -), IEVM interpretation; (- \triangleleft -), IP2 interpretation; (- \triangleleft -), one-electron IPM-CTMC. Experimental results of Rudd *et al.*: (\blacksquare). Previous calculations: (- \triangleleft -), BGM-IPM, Kirchner *et al.* Phys. Rev. A (2002); (- + -), standard CTMC, Fremont J. Phys. B (2016).

Final remarks

- Calculation of accurate total and n, ℓ-partial cross sections employing GTDSE and CTMC methods.
- Satisfactory agreement of CTMC and GTDSE results for electron capture with H(2s) targets. h-CTMC shows better agreement for excitation into H(n=4,5), which supports the application of this method for excitation into high n-lying excited levels (very difficult to compute with CC or grid treatments).
- Good agreement of h-CTMC (better than m-CTMC) and GTDSE with other nonperturbative EC in collisions with H(1s).
- The CTMC method yields accurated ionization cross sections in the 10-500 keV/u energy range.
- In H⁺ + Ar collisions, H and H⁻ formation cross sections calculated by our MFCC and s-CTMC models are in good agreement with the experiments.

Coworkers

- A. Jorge
- L. Méndez
- I. Rabadán

THANK YOU FOR YOUR ATTENTION!