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THEORETICAL TREATMENT:

THEORETICAL APPROACH

• semi-classical approach

impact	parameter approximation

• sudden approximation																	(for	molecular targets)
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THEORETICAL TREATMENT:

and								

expansion	on	a	set	of	asymptotic target and			ETF-augmented projectile	states
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THEORETICAL APPROACH

• solve

with	evaluation	of		all	matrix	elements,	e.g.

• to	compute	probability	and		cross	section

and	also	differential	cross	sections	…
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OUR TWO IMPLEMENTATIONS:
Both based on	the	use	of	(multi-center)	Gaussian Type	Orbitals (GTO)

(and	their products)
• implementation	1

-
- developed	up	to	4	active	electrons	(including	all	possible	spin	states)

- matrix	element	evaluations		based	on	

with,	e.g.	
details	in	PRA	84	052722	(2011)

IMPLEMENTATIONS
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considered. At lower collision energy, it overestimates the
single-electron-capture cross sections and more extensive
basis-set calculations or a converged three-center MOCC
approach are required. Cross sections for double-electron
capture into bound states and autoionizing states of helium
have been shown and compared to the available experimental
and theoretical data. Good agreement with the most recent
results have been achieved. The results reported in the
article show that the present method is a powerful tool to
study one- and two-electron processes in ion-molecule keV
collisions. The extension of the present method and computer
codes to polyatomic and polyelectronic molecular targets
is straightforward, although very demanding in computer
resources, memory, and CPU time. We are presently planning
this development, taking into account the electronic correlation
and the multicenter character of the target, in order to pave the
way to go beyond the effective single-center-target approx-
imations in quantal calculations (cf. e.g., [47]) or classical
independent-electron treatments [48] used to describe ion-H2O
collisions.

APPENDIX A: METHOD AND STRATEGY FOR
COMPUTATIONS OF DIFFERENT COUPLING

MATRIX ELEMENTS

To develop the new computer code we based the repre-
sentation of the scattering state on a Gaussian-type orbital
(GTOs) basis set which allow the analytical expression of
the required matrix elements of M and S [see Eq. (7)]
and, therefore, a considerable speedup of the calculations
over Slater-type orbital (STOs) expansions. Procedures for
the evaluation of one-electron and two-electron two-center
integrals have been presented respectively in Caillat et al. [30]
and Wang et al. [43] (and references therein). We report here
a modified version of the method which allows us to evaluate
two-electron three-center integrals. To build a completely
general procedure we based the computations of those matrix
elements on symbolic derivations of genuine integrals. We
present in the following the formalism for multicenter one-
electron integrals, two-center two-electron integrals extended
to three-center two-electron integrals by using well-known
translation properties of GTOs.

1. One-electron integrals computations

Multicenter one-electron integrals can be written in a general form as

I =
∫ ∞

0
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0
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where u1,v1, . . . ,w2,m1,m2, and m3 are positive integers or zero. Vectors %r , %r ′, and %r ′′ are the electron coordinates with respect
to the origin, the projectile and potential center (%r ′ = %r − %R and %r ′′ = %r − %ρ), respectively. This general form allows us to define
all kind of useful integrals, with potential (λ = 1) or without (λ = 0, α3 = 0), with ETF (µ = 1) or without (µ = 0), as well as
for two centers ( %ρ = %R or %0) or three. The integral I is written as derivatives of the genuine integral Jλ as
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and the powers m1, m2, and m3 must be even. The analytical form of Jλ can be expressed as
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for integrals with potential (λ = 1) and

J0 =
(
π

α

)3/2

exp (−α2R
2 − i %b · %R)eA2/(4α), (A5)

for integrals without potential (λ = 0), where the various parameters used above are defined as

α = α1 + α2 + α3, %A = i%a + 2α2 %R + 2α3 %ρ, %B = %A − 2α %ρ. (A6)

The derivatives defined in Eq. (A3) are then done symbolically directly in the FORTRAN computer code and then evaluated
numerically. Two-electron integrals are computed using the same strategy. However, more derivatives have to be performed as
presented in the following.
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2 − α2r

′2 − α3r
′′2 + i%a · %r + i %b · %r ′)

(r ′′)λ
(λ = 0,1). (A3)

and the powers m1, m2, and m3 must be even. The analytical form of Jλ can be expressed as

J1 = 2π3/2

B
√
α

exp (−α2R
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(

B

2
√
α

)
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for integrals with potential (λ = 1) and

J0 =
(
π

α

)3/2

exp (−α2R
2 − i %b · %R)eA2/(4α), (A5)

for integrals without potential (λ = 0), where the various parameters used above are defined as

α = α1 + α2 + α3, %A = i%a + 2α2 %R + 2α3 %ρ, %B = %A − 2α %ρ. (A6)

The derivatives defined in Eq. (A3) are then done symbolically directly in the FORTRAN computer code and then evaluated
numerically. Two-electron integrals are computed using the same strategy. However, more derivatives have to be performed as
presented in the following.
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considered. At lower collision energy, it overestimates the
single-electron-capture cross sections and more extensive
basis-set calculations or a converged three-center MOCC
approach are required. Cross sections for double-electron
capture into bound states and autoionizing states of helium
have been shown and compared to the available experimental
and theoretical data. Good agreement with the most recent
results have been achieved. The results reported in the
article show that the present method is a powerful tool to
study one- and two-electron processes in ion-molecule keV
collisions. The extension of the present method and computer
codes to polyatomic and polyelectronic molecular targets
is straightforward, although very demanding in computer
resources, memory, and CPU time. We are presently planning
this development, taking into account the electronic correlation
and the multicenter character of the target, in order to pave the
way to go beyond the effective single-center-target approx-
imations in quantal calculations (cf. e.g., [47]) or classical
independent-electron treatments [48] used to describe ion-H2O
collisions.

APPENDIX A: METHOD AND STRATEGY FOR
COMPUTATIONS OF DIFFERENT COUPLING

MATRIX ELEMENTS
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(λ = 0,1; µ = 0, ± 1), (A1)
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• implementation	2

- with

e.g.,	for	d-states,	6	cartesian	GTOs

- developed	up	to	2	active	electrons

- matrix	element	evaluations		based	on	the	same	approach,	except	for	the	

rewritting of	the	integrations	into	recurrence	formula	for	efficient	calculations

of	matrix	involving	GTOs	of	high	angular	momenta	
details	in	JPB	49,	085202	(2016)

⟹ these	2	different	and	independent	codes	covering	about	the	same	impact	
energy	range	and	having	different	numerical	features,	extremely	efficient	to	test	
accuracy	and	possible	numerical	instabilities	and	compare	results.	

IMPLEMENTATIONS
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About	convergence	…			from calculations using 5	basis	sets

• S	:	102	GTOs (20	s	+	14*3	p	+	8*5	d)	on	each center
38+32	(0<E<4	)	= 70	states	on	T
53+9	(0<E<4)		= 62	states	on	P

• Sf :	144	GTOs (as	S	+	6*7	f)	on	each center	
55+60	(0<E<4)	= 105 states	on	T
81+23	(0<E<4)	= 104	states	on	P

• B	:	153	GTOs (30	s	+	21*3	p	+	12*5	d)	on	each center
48+49	(0<E<4	)	= 97	states	on	T
63+27	(0<E<4)	= 90	states	on	P

• Bf :	216	GTOs (as	B	+	9*7	f)	on	each center	
62+84	(0<E<4)	= 146 states	on	T
98+48	(0<E<4)	= 146	states	on	P

• Ng :	207	GTOs (24	s	+	18*3	p	+	12*5	d	+	6*7	f	+	3*9	g)	on	each center	
89+75	(0<E<3)	= 164 states	on	T
69+34	(0<E<4)	= 123	states	on	P

ABOUT CONVERGENCE FOR 
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1s= -0.50000 -0.5 e.g. energies on H
2s= -0.12500 -0.125
2p= -0.12499 -0.125 
3s= -0.05553 -0.05555
3p= -0.05552 -0.05555
3d= -0.05555 -0.05555
4s= -0.03108 -0.03125
4p= -0.03110 -0.03125
4d= -0.03105 -0.03125
4f= -0.03124 -0.03125
5s= -0.01853 -0.02
5p= -0.01956 -0.02
5d= -0.01906 -0.02
5f= -0.01996 -0.02
5g= -0.01990 -0.02
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Total cross section (in 10-16 cm2) comparison
E (keV/u) CAPTURE EXCITATION IONISATION

S 1.74E+01 1.80E+02 2.52E+01
Sf 3.39E+01 1.74E+02 5.53E+01

20 B 1.38E+01 4.70E+01 3.86E+01
Bf 2.45E+01 5.05E+01 4.97E+01
Ng 5.62E+01 1.51E+02 6.44E+01

S 3.97E-01 1.10E+02 3.63E+01
Sf 6.07E-01 9.15E+01 6.06E+01

100 B 2.63E-01 5.50E+01 2.78E+01
Bf 4.26E-01 4.43E+01 4.20E+01
Ng 5.64E-01 9.89E+01 5.51E+01

S 8.50E-04 3.99E+01 1.42E+01
Sf 9.26E-04 3.83E+01 1.84E+01

500 B 7.13E-04 2.26E+01 9.55E+00
Bf 7.16E-04 2.25E+01 1.21E+01
Ng 1.94E-03 4.09E+01 1.59E+01
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The	study of	collisions	involving initial	excited states	is a	
challenge:
• creation of	large	basis	sets	with very diffuse	states,
• long	calculations,	even for	1-electron	systems,	
• convergence	check	is a	real	issue

Therefore to	extend these calculations to	very excited states	(e.g.	
n=5-10)	would be very complex but	scalings can	be created using
the	comparison between "easy »	classical (CTMC)	and	
semiclassical close	coupling calculations,	see for	example JPB	51,	
235202	(2018)	 and	also ADND	Tables	129,	101281	(2019)
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