

Experimental possibilities in Jülich – an update

15th June 2016

| M. Köppen

A. Allouche, F. Aumayr, D. Borodin, J. Bröder, T. Dittmar, K. Dobes,

- P. Dollase, J. Du, Y. Ferro, A. Kreter, J. Linke, Ch. Linsmeier, D. Matveev
- | C. Pardanaud, B. Spilker, B. Unterberg, T. Weber

Outline

- 1. Motivation
- 2. Update on experiments
 - XPS
 - Raman
 - ARTOSS
 - FREDIS
 - JULE-PSI
 - JUDITH 1 & 2

3. Concluding Remarks

Motivation

- ITER material mix: Be and W
 - 700 m² Be
 - W in divertor region
- Plasma impurities
 - Seeding gas, e.g. Nitrogen
 - Contaminations, e.g. Oxygen
- Material transport by:
 - Erosion
 - Plasma transport
 - Re-deposition

Why is compound formation of interest?

- Elevated temperatures and ion irradiation lead to solid state reactions
 - e.g. Be₂W alloy formation in divertor region
- Be-based mixed materials have new properties compared to Be:
 - Isolating / different conductivity
 - Altered hydrogen retention
 - Co-deposits
 - Ammonia formation
 - Physical and Chemical Data needed as input data for e.g. ERO, SOLPS, WallDyn to predict first wall properties for future devices

	Ве	BeO	Be ₃ N ₂	W	WO ₂	WO ₃
Melting Point [K]	1551	2780	2473	3683	1773	1746
Δ _f H° [kJ mol ⁻¹]		-609	-558		-590	-843

Mitglied der Helmholtz-Gemeinschaft

Multi-method approach: Solutions

XPS setup Investigation of Be-based mixed materials

Experimental Setup

R4000 analyser

Experiments: Overview XPS Main chamber **Monochromatic** lon source **XPS** x-ray source Monochromatic x-ray Electron sources source Hemispherical analyser 2 ion sources, one with a Wien Mass Filter 2 electron sources UV source Sample size: heating: 2,5 cm Non-heating: 5 cm 4-axes manipulator IAEA Be-CRP Meeting 2016, Vienna 15 June, 2016

spectrometer

Mass

UHV

manipulator

Quartz balance

Experiments: Overview XPS Preparation Chamber

- 3 electron evaporators for W, C, Be
- Manipulator, heating up to 2500 °C
- Mass spectrometer
- High-resolution quartz micro balance can be integrated

First implanted species occupies energetically favoured trap sites

Isotope exchange: Status & Outlook

Done:

- Construction, installation and commissioning of the experimental setup
- First experiments for deuterium/hydrogen isotope exchange on beryllium

To do:

- Further experiments with the ion source with Wien filter
- Use different implantation enegies (500 eV to 5,000 eV)
- Do the same experiments on Be₃N₂

Outlook: Ammonia formation on Be-N

Exposure of thin Be-N films to hydrogen ions & gas under:

- Different surface temperatures (ions & gas)
- Different hydrogen partial pressures (gas)
- => Address the issue of mobilized tritiated ammonia

Outlook: Interaction of Be and noble gases

- Influence of noble gas ion bombardment on:
 - Be and its electronic structure (UPS and maybe DFT investigation)
 - H-retention behaviour
 - Noble gases to investigate: He, Ne, Ar, Kr, Xe

See Allouche et al., 2015

Beryllides

- Understanding beryllides is important as they are used in the breeding blanket
- DFT study on beryllides performed
- Experiments on thermal behaviour and H-retention of beryllides start in october 2016
- Beryllides: Be₁₂Cr, Be₁₂Ta, Be₁₂W, Be₁₂Ti, Be₁₂V

Raman Spectroscopy Collaboration with Aix-Marseille Université

Example 3: Be implanted by D $(\phi > 2x10^{17} \text{ cm}^{-2}, \text{ E}_c = 2 \text{ keV})$

Be-D vibrational modes evidenced on dendrites !

ARTOSS Dedicated to H-retention experiments

ARTOSS

- Ion beam analysis
 - Nuclear reaction analysis (NRA)
 - Rutherford backscattering spectroscopy (RBS)
- Mass-spectrometer for thermal desorption spectroscopy (TDS)
- Standard-X-ray Source

ARTOSS

- Mass-seperated low energy ion source (0.1-10 keV)
- Thermal atomic H-source
- Base Pressure: < 5 x 10⁻¹¹ mbar
- Electron beam evaporator

ARTOSS

Achievements & Outlook

- ARTOSS commissioning is complete (without bake-out)
- Start with Beryllium phase:
 - Dedicated studies on the retention behaviour of the beryllium tungsten alloys Be₂W, Be₁₂W and Be₂₂W
 - Comparison to DFT calculation by A. Allouche & L. Ferry and J. Bröder
 - Modelling with CRDS by D. Matveev

From Bröder 2015

FREDIS

FREDIS: Designed for JET-Tiles

- Combines classic TDS with laser-induced mass spectrometry (LID-QMS)
- Operation in hot materials lab => investigation of
 - Beryllium samples
 - Irradiated samples
 - Tritium-contaminated samples

FREDIS: Fuel Retention Diagnostic Set-up

Status & Outlook

Done:

- Device tested outside HML
- First measurements on test samples were successful
- TDS: precise measurements up to 1400 K
- LID-QMS: Spatial resolved H release

To do:

- Transfer to HML & re-commissioning
- Comparison of TDS and LID-QMS

Test measurements using LID-QMS for large scale tiles outside of HML

JULE-PSI

JULE-PSI – a new linear plasma device to investigate PSI processes with Be

Build to study erosion and fuel retention on Be and Be-based mixed materials

Status:

- Detailed feasibility study and design review finalized Feb. 2016
- JULE-PSI is currently being assembled outside of the controlled area
- first plasma operation expected for fall 2016 with a new plasma source following PISCES-B concept
- relocation to HML end of 2017

JULE-PSI: Tech Specs

- Steady-state plasma exposure with plasma flux densities of 10²¹ – 10²³ m⁻²s⁻¹ and power flux densities of 0.1-2 MW m⁻²
- Transient heat loads simulated by means of a Nd:YAG laser with pulse energies up to 100 J and pulse lengths 0.1-20 ms on top of the plasma load
- Measurement of fuel retention by LID-QMS, assessment of net erosion by weight loss measurements

Judith 1 & 2 Behaviour of Be under ITER relevant cyclic heat fluxes

Introduction – Power loads to the FW

M. Kočan et al., J. Nucl. Mater. (2015), http://dx.doi.org/10.1016/j.jnucmat.2014.11.130 A.R. Raffray et al., Nucl. Fusion 54 (2014), 033004 (18pp) A. Loarte et al., Phys. Scr. T128 (2007), 222-228

15 June, 2016

Mitglied der Helmholtz-Gemeinschaft

IAEA Be-CRP Meeting 2016, Vienna

Electron beam facilities JUDITH 1 & 2

JUDITH 1

JUDITH 2

JUDITH 2 – machine parameters					
Max. beam power:	200 kW				
Acceleration voltage:	40 – 60 kV				
Irradiation area:	40 × 40 cm ²				
Power density:	\leq 2 GW m ⁻²				
Pulse length:	5 µs – cont.				

Last CRP (19.05.2014)

 Influence of the surface finish on the cracking behavior / thermal shock performance of beryllium (polished is best up to 1000 pulses) doi:10.1016/j.fusengdes.2015.10.028

Progress since then

- 1. Damage mapping for transient heat loads doi:10.1088/0031-8949/T167/1/014024
- 2. Experimental simulation of massive gas injection induced heat loads
- 3. ITER/ELM relevant high pulse number experiments
- 4. Transient heat load induced oxide segregation
- (5.) Planned: Transients simulated by laser (important and valuable comparison to e-beam, answering various open questions)

Scientific objectives

1. Damage mapping

3. High pulse numbers

2. Massive gas injections

4. Oxide segregation

Conclusion

Conclusion

- JUDITH 1 & 2 work as expected
- ARTOSS will start operation soon
- XPS-Setup succesfully finished first experiments
- FREDIS & JULE-PSI are foreseen to start operation in hot materials lab in 2017
- Most experimental setups are fully operational just now or will be operational soon
- ⇒ From my point of view, the Be-CRP should be prolonged to reap scientific results