

RCM, 27-29 March 2023

Large-Scale Relativistic Calculations for Atomic Structure and Electron Impact Excitation of Impurity Ions

Lalita Sharma, PhD Assistant Professor Department of Physics IIT Roorkee

Spectroscopic and EIE results

Na-like ions of Ar, Kr and Xe

Extended calculations of Atomic Structure Parameters for Na-like Ar, Kr and Xe Ions using relativistic MCDHF and MBPT Methods

- Highly charged ions of inert gases are of particular interest in plasma research and extreme ultraviolet lithography.
- The spectroscopic data of HCIs of Ar, Kr and Xe are essential to interpret the spectra correctly and to model the conditions in plasmas containing these species.
- There is scarcity of the atomic structures data for higher excited states of Na-like Ar, Kr and Xe ions.
- For Ar⁷⁺, fine structure energies and radiative parameters of a few higher levels, viz., 7*f*, 7*g*, 7*i*, 8*p*, 8*f*, 8*g*, 8*i* are absent in the literature.
- > For Kr²⁵⁺, these parameters are available for n = 3-6, l = s, p, d, f levels only.
- For Xe⁴³⁺ although its level energies are available up to n = 3-6, l = s, p, d, f, transition probabilities have been reported for only a few transitions among the low lying states.
 - S. Rathi and L. Sharma Atoms 2022, 10(4), 131

- Extensive calculations of energies and lifetime of lowest 71 states of Na-like Ar⁷⁺, Kr²⁵⁺ and Xe⁴³⁺ ions.
- Radiative parameters viz., wavelengths, line strengths and transition rates among the 71 levels are determined.
- > The configurations of interest include: $1s^22s^22p^6nl$ for n = 3 to 9, l = 0 to 6.
- The fully relativistic multiconfiguration Dirac Hartree-Fock (MCDHF) with the Breit and QED (vacuum polarization and self-energy) effects is implemented.
- The effects of the Breit and QED (vacuum polarization and self-energy) corrections on the level energies is analyzed for Xe⁴³⁺.
- Accuracy of the results are verified by carrying out similar calculations using the many body perturbation theory.

S. Rathi and L. Sharma Atoms 2022, 10(4), 131

In MCDF, the atomic state is represented by atomic state function (ASF) which is approximated by the linear combination of orthonormal set of configuration state functions (CSFs) having same parity *P* and angular momentum *J*

Methodology:

Results

The convergence of present results with increasing active sets for Ar⁷⁺, Kr²⁵⁺ and Xe⁴³⁺, respectively is shown in Figs. (a), (c) and (e).

The comparison of present results with data available from the NIST and other theoretical results is shown in Figs. (b), (d) and (f), respectively..

 The mean relative deviation of the present results with respect to the NIST ASD is 0.15%, 0.032% and 0.08%, respectively for Ar⁷⁺, Kr²⁵⁺ and Xe⁴³⁺.

S. Rathi and L. Sharma Atoms 2022, 10(4), 131 IIT ROORKEE

Contd...

The RSCF and RCI energies with contributions from the Breit, self energy (SE), vacuum polarization (VP) and Nuclear corrections for Xe⁴³⁺

Level				Energies (cm ⁻¹)			
	RSCF	SE	VP	Nuclear Recoil	Breit	Total	NIST [48]
$3p^{2}P_{1/2}$	808,702	-19,696	1779	-64	10,643	801,364	806,985
$3p^2P_{3/2}$	1,512,126	-18,236	1855	-63	797	1,496,479	1,501,276
$3d^2D_{3/2}$	2,539,364	-20,144	1857	-86	-4016	2,516,975	2,523,660
$3d^2D_{4/2}$	2,700,953	-19,679	1855	-87	-10,160	2,672,882	2,679,380
$4s^2S_{1/2}$	12,277,698	-16,315	1083	-49	-9534	12,252,883	12,263,000
$4p^2P_{1/2}$	12,611,836	-19,865	1797	-74	-5238	12,588,456	12,596,000
$4p^2P_{3/2}$	12,897,971	-19,591	1829	-74	-9194	12,870,941	12,880,000

S. Rathi and L. Sharma Atoms 2022, 10(4), 131

The SE and Breit effects plays a significant role in improving the RSCF energies.

Total represent the sum of all the corrections and the RSCF energies.

Transition parameters

The agreement between the present and others results

S. Rathi and L. Sharma, Atoms 2022, 10(4), 131

Transition parameters

The agreement between the line strengths (S) calculated in length (S_L) and velocity (S_V) gauges

S. Rathi and L. Sharma, Atoms 2022, 10(4), 131

Transition parameters

The relationship between the line strengths from the MCDHF (S_{RCI}) and MBPT (S_{MBPT}) method

S. Rathi and L. Sharma, Atoms 2022, 10(4), 131

Contd...

A statistical approach is used to calculate the uncertainty percentage in *S* and transition rates (*A*).

Independent calculations are done for levels with $n \leq 7$ and n > 7.

The percentage of transition categorized according to NIST nomenclature

$\Delta ccuracy$	Percentage of F1 transitions						
Accuracy		Terce	inage of	LI tian	51110115		
	$n \leq 7$			n > 7			
	Ar ⁷⁺	Kr ²⁵⁺	Xe ⁴³⁺	Ar ⁷⁺	Kr ²⁵⁺	Xe ⁴³⁺	
$A+\leq 2\%$	0	7.48	27.31	0	0	0	
A $\leq 3\%$	0	13.72	4.83	0	0.42	0	
$B+ \leq 7\%$	14.20	15.38	6.93	0	18.30	35.08	
$B \leq 10\%$	12.92	2.70	1.68	2.33	15.59	11.76	
$C+ \le 18\%$	14.19	2.49	2.10	6.78	14.55	6.09	
$C \leq 25\%$	1.91	0.83	0.42	9.53	4.37	1.47	
$D+\leq 44\%$	1.91	0.83	0.21	9.32	1.45	1.89	
$D \leq 54\%$	0	0.21	0	5.08	0	0	
E > 54%	1.06	0	0	20.76	1.66	0.21	

In Relativistic Distorted Wave (RDW) theory, the **Transition matrix** for the electron impact excitation of N-electron atom from initial state $(a) \rightarrow$ final state (b)

$$\begin{aligned} V_{in}(r_i, r_j) &= V^{Coulomb} + V^{Breit} \\ &= \sum_{i < j} \left(\frac{1}{r_{ij}} - \alpha_i \cdot \alpha_j \frac{1}{r_{ij}} + \frac{1}{2} \, (\alpha_i \cdot \nabla_i) (\alpha_j \cdot \nabla_j) r_{ij} \right) \end{aligned}$$

Polarization of emitted photons

$$P = \frac{3(\sigma_{3/2} - \sigma_{1/2})}{5\sigma_{1/2} + 3\sigma_{3/2}}$$

 $\sigma_{1/2}$ and $\sigma_{3/2}$ represents the excitation to magnetic sub-levels $M_b = 1/2$ and 3/2 of $(n + 1)p_{3/2}$ level from the ground state $ns_{1/2}$, respectively.

Fe ²⁵⁺					
Energy (keV)	Interaction	RDW	RCCC [1]	Experiment[2]	
30	Coulomb	0.186	0.186	0.071 ± 0.034	
30	Coulomb + Breit	0.146	0.145		
120	Coulomb	0.011	0.0095	-0.236 ± 0.109	
120	Coulomb + Breit	-0.105	-0.114		

Bostock, Christopher J., Dmitry V. Fursa, and Igor Bray. *Physical Review A* 80.5 (2009): 052708.
Robbins, D. L., et al. *Physical Review A* 74.2 (2006): 022713.

Cross Sections and Rate coefficients

• The scattering amplitude for the transition can be obtained as

$$f(J_{b}M_{b}, k_{b}\mu_{b}; J_{a}M_{a}, k_{a}\mu_{a}, \theta) = (2\pi)^{2} \sqrt{\frac{k_{b}}{k_{a}}} T_{a \to b}(J_{b}M_{b}, k_{b}\mu_{b}; J_{a}M_{a}, k_{a}\mu_{a}, \theta)$$

• The Differential Cross Section (DCS) can be calculated from the scattering amplitude as

$$\frac{d\sigma_{a\to b}}{d\Omega} = \frac{1}{2(2J_a+1)} \sum_{\substack{M_a, \, \mu_a \\ M_b, \, \mu_b}} |f(J_b M_b, k_b \mu_b; J_a M_a, k_a \mu_a, \theta)|^2$$

The Integral Cross Section is calculated by integrating the DCS over all solid angles

$$\sigma_{a \to b} = \int \frac{d\sigma_{a \to b}}{d\Omega} d\Omega$$

• Rate coefficients $(k_{a \rightarrow b})$ at a particular temperature *T* (considering Maxwellian electron energy distribution function)

$$k_{a\to b} = 2\left(\frac{2}{\pi m_e}\right)^{\frac{1}{2}} (k_B T)^{-\frac{3}{2}} \int_{E_{ab}}^{\infty} E\sigma_{a\to b}(E) exp\left(-\frac{E}{k_B T}\right) dE$$

- Energies and lifetimes of 255 levels of Xe⁴⁹⁺ are calculated implementing the MCDHF method.
- The electric dipole (E1) and quadrupole (E2), magnetic dipole (M1) and quadrupole (M2) transition parameters among these levels are calculated.
- > The configurations under considerations are $1s^22s^2nl$, $1s^22p^2nl$, $1s^22s2pnl$ with n < 5and l = s, p, d, f.
- Analysis of corrections due to the Breit and QED effects is done for the lowest 15 levels.
- Uncertainties in the lifetimes and line strengths are calculated and transitions are classified according to the NIST accuracy nomenclature.
- > Atomic structure parameters for additional 130 levels are reported for the first time.
- S. Rathi and L. Sharma, NCAMP-2023, IIST, Trivendrum, Feb 20-23, 2023

Methodology

Single-Double substitution of electrons from the MR to the AS layers.

S. Rathi and L. Sharma, NCAMP-2023, IIST, Trivendrum, Feb 20-23, 2023

I I T ROORKEE 🔳 🔳 🔳

Results

The convergence of present energies with increasing active layers

S. Rathi and L. Sharma, NCAMP-2023, IIST, Trivendrum, Feb 20-23, 2023

The present energies (eV) and					
contributio	n of Brei	t and	QED	cor	rections
Level	MCDHF	Breit	SE	VP	Total
					-
$2s^2 2p \ ^2P_{1/2}$	0.0	0.0	0.0	0.0	0.0
$2s2p^2 \ ^4P_{1/2}$	163.0	6.7	-7.1	0.9	163.5
$2s^22p \ ^2P_{3/2}$	363.9	-5.8	0.4	0.1	358.6
$2s2p^2 \ ^4P_{3/2}$	477.5	0.8	- 6.5	0.9	472.6
$2s2p^2 \ ^2D_{5/2}$	513.1	- 3.1	- 6.5	0.9	504.4
$2s2p^2 \ ^2D_{3/2}$	561.5	-1.3	-6.5	0.9	554.6
$2s2p^2 \ ^2P_{1/2}$	559.4	1.1	-6.5	0.9	554.9
$2p^{3^2}D_{3/2}$	735.2	6.1	-13.5	1.8	729.6
$2s2p^2 \ ^4P_{5/2}$	861.5	-7.0	-6.0	1.0	849.4
$2s2p^2 \ ^2S_{1/2}$	931.4	-3.2	-6.0	1.0	923.2
$2s2p^2 \ ^2P_{3/2}$	935.4	-6.0	- 6.0	1.0	924.4
$2p^{3} {}^{4}S_{3/2}$	1067.0	0.7	-13.1	1.9	1056.5
$2p^{3} \ ^{2}D_{5/2}$	1090.5	-3.1	-13.1	1.9	1076.1
$2p^{3} {}^{2}P_{1/2}$	1123.7	1.9	-13.1	1.9	1114.4
$2p^{3} {}^{2}P_{3/2}$	1463.4	- 5.1	-12.5	1.9	1447.6

I I T ROORKEE

Transition Parameters

The percentage of present *S* values for E1, E2, M1 and M2 transitions falling in each of the NIST accuracy class

	Perc	enta	ge of '	Transitions
Accuracy class	E1	E2	M1	M2
$A + (\leq 2\%)$	80	61	98.8	85.7
$A \ (\leq 3\%)$	4	6	0.5	6
$B + (\le 7\%)$	6	19	0.5	6
$B \ (\le 10\%)$	2	14	0.1	1
$C + (\le 18\%)$	3	0	0.1	1
$C \ (\le 25\%)$	1	0	0	0.1
$D + (\le 44\%)$	2	0	0	0.1
$D \ (\leq 54\%)$	0	0	0	0
E (> 54%)	1	0	0	0

Туре	Number of transitions
E1	10562
E2	8568
M1	6000
M2	7224

S. Rathi and L. Sharma, NCAMP-2023, IIST, Trivendrum, Feb 20-23, 2023

- The lowest 150 fine-structure levels belonging to the 3s²3p⁶, 3s²3p⁵3d, 3s3p⁶3d, 3s²3p⁴3d², 3s3p⁵3d² configurations in Ar-like Kr¹⁸⁺ using GRASP2018 code.
- 2. Energy levels, lifetime, wavelength, weighted oscillator strength, transition probabilities and line strengths for electric and magnetic dipole (E1,M1) and quadrupole (E2,M2) transitions are calculated.
- 3. Since very limited measurements are available for comparison with the present results, we performed another set of calculations using many body perturbation theory (MBPT).

Methodology

N. Ghosh and L. Sharma, NCAMP-2023, IIST, Trivendrum, Feb 20-23, 2023

Results

Sahoo, A.K.; Sharma, L. Electron Impact Excitation of Extreme Ultra-Violet Transitions in Xe⁷⁺–Xe¹⁰⁺ Ions. Atoms **2021**, 9, 76. https://doi.org/10.3390/atoms9040076

Article Electron Impact Excitation of Extreme Ultra-Violet Transitions in Xe⁷⁺–Xe¹⁰⁺ Ions

Aloka Kumar Sahoo [†] and Lalita Sharma *^{,†}

Department of Physics, Indian Institute of Technology, Roorkee 247667, India; aloka_s@ph.iitr.ac.in

* Correspondence: lalita.sharma@ph.iitr.ac.in; Tel.: +91-1332-28-5729

† These authors contributed equally to this work.

Abstract: In the present work, a detailed study on the electron impact excitation of Xe⁷⁺, Xe⁸⁺, Xe⁹⁺ and Xe¹⁰⁺ ions for the dipole allowed (E1) transitions in the EUV range of 8–19 nm is presented. The multi-configuration Dirac–Fock method is used for the atomic structure calculation including the Breit and QED corrections along with the relativistic configuration interaction approach. We have compared our calculated energy levels, wavelengths and transition rates with other reported experimental and theoretical results. Further, the relativistic distorted wave method is used to calculate the cross sections from the excitation threshold to 3000 eV electron energy. For plasma physics applications, we have reported the fitting parameters of these cross sections using two different formulae for low and high energy ranges. The rate coefficients are also obtained using our calculated cross sections and considering the Maxwellian electron energy distribution function in the

24

Acknowledgement

- PhD Scholars
- Shikha Rathi
- Aloka Kumar Sahoo
- Nitish Ghosh
- Ayushi Aggrawal
- Dibyendu Mahato

Thank you for your kind attention

