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Requests from IAEA-1

What data are needed for modelling the atomic and molecular physics of injected impurities?
Are impurities both for power mitigation and for plasma diagnostics in scope?

Which species should be in scope: certainly, N and Ne (maybe also Ar?)
for power control in the divertor area; Li, B and BN for edge plasma regions; others?

>>these materials are used for turbulence control (B) and impurity and hydrogen recycling
control (B, Li)

*Method 1; pellet, 2; IPD, 3; gas,

4;Laser ablation (no page, for example SWIP in China)

Which processes are of greatest importance (collisions with H/D/T/He/e-, radiative line
strengths), and which energy ranges (1 — 100 eV up to several keV for ELMs)?

What is the importance of molecules to the CRP, e.g. in the formation of NHx isotopologues in
the sub-divertor region?

How are data incorporated into models like SOLPS-ITER and how can integration of new data
be facilitated?



Methodl; Spectroscopy and tungsten pellet injection in LHD

LHD

 Bt<3T,R=3.6m,<a>=0.64m
- Toroidal/poloidal period number = 10/2
* Heating: ECRH, NBI

— negative ion source (
— positive ion source (
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Introduction: Tungsten behavior in fusion plasmas
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Dlvertor | of Fusion Energy 38, 11 (2019)]

In the\Large Helical Device (LHD),
spectroscopic studies for tungsten ions
using a tungsten pellet injection technique
have been intensively conducted.

In this talk, the tungsten spectra in visible,
VUV, and EUV wavelength ranges
observed in LHD will be summarized.
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Application of the observation
(i) Temporal evolution of
the WO-\W46* emission

WO W5+ W6+ W24+_W28+ W37+ W38+ and
WA4L+\W46+ [ine emissions were picked up
as useful emission lines to monitor
temporal evolution of emission intensity in
a wide range of the charge states.

The dominant charge state varied
sequentially in time, together with T,. It
iS a reasonable relationship between T,
and the ionization energy, E..

W10+_\W20+ emission data are insufficient.

L T, of LHD core
(W pellet + n-NBI)

)

@ L_J : Charge states of
W ions observed in LHD
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Method 2; Impurity powder dropper (IPD)

IPD was developed in PPPL and IPD-LHD experiments w ;gj% IPD system in LHD
were startedin 2019. I |
Powders are served to plasmas by the gravity force. A | |
distance from the cup of powders to plasmas is more
than 3 m

.

-EAST has the similar
system for Li

Dropped amounts of powders were controlled by the
piezo vibration. At present, two materials, B and BN can
be dropped in LHD :

* 2~50gboron(B)® =~100 um

-In LHD, we planed
to use of Li, but
could not use it. It
planin 2022.




IPD : Visible camera observation

Boron dropping
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Starting time of Piezo vibration from 3s.
Starting time of brightness due to dropped powders about 4s.



Spatial profiles of boron intensities (IPD)
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Boron dropping in EAST

EAST Shot#85041 85052

» No Boron (#85041)
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B, Li dropping in EAST (2021)
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B dropping in LHD

LHD 171050 (st rax, gamma, Bq) = (2.75, 3.6, Increasing of Clll in the case of w/o boron at 7s,
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Supersonic Gas puff (SSGP) for both #171050 and #171051 at 6.5s. After SSGP, Da increases at w/o B. How
about He discharge? <<In the request sheet, He SSGP is written.
If coating effect on the target is reason for a reduction of Da, it is might be useful for He.



Progress on analytical method; Ti of B using Bll data

T OIShI, et a|_’ Plasma Sci. Technol. 23 (2021) 084002
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Figure 9. lon temperature measurement of BT ions using a 3 m
normal incidence VUV spectrometer. (a) Wavelength spectrum of
BII 1362.46 A together with a Gaussian function as a fitting curve.
Temporal evolutions of (b) edge electron temperature Te(age) and
edge electron density ne(age), and (c) the temperature of B" ions,
Ti . and the emission intensity of the BII line. (d) Edge electron



Comparison of different impurity injection: Z.S.Yang
Yo pp Ar/Ne puffing on the outer divertor target both achieve steady-state partial energy detachment
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Radiative divertor simulations for Ne seeding scenarios by using SOLPS code

Zim

Computational mesh for Ne
ieeding for EAST #71021 (t=2.95s)
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after Ne seeding (EAST #71021)

o L L L L L L
ﬂ‘)_gd 085 05 087 0% 0% 1

Shot #71021

© Exp-285s

o Exp-378z 4
~——S0LPS-2.95s
——S0LPE-5.78s7

&

L L L
101 102 1035 1.04

The agreement
between simulated
midplane profiles
and experimental

results

P
The upstream density and temperature

0 Duter Target Inner Target .
T | ose | n oF a2 8
iy ,05F 8 o
200 o o EK-; : /“ sPeaes (20 g
SOLPS-2 95 o1 & / -
10 su.nsam_,%: S‘“} a_ [ II Y 10 S_-‘..
o= e R | oo 8 8 oy
a0 A H H 40
o | | AT -
B | E
o | - | E-]
20 J['% qg I - ZDE
E = =) - - =
ol ‘a,l;-"‘s ] soofls 8 8 5 gly ©
&6 ¥ ! ! 40
e !
40 ~ =
P 2 B [ v 20 =
20 FALE e g A — -
1 - . a
B e s LSS vl B S ]
B I 94
i e
1 n
! I i ? 0z
o e b a—nldft —a-3 1,
5 10 15 20 5 10 15 20 25
diem diem

The density and temperature for outer /inner upper

divertor target (experiments data vs. Simulation results)

*

¢

Radiation distribution at different seeding rate

i

e
e Yo

8% 10* parti

Lower frad* (<40%): radiation mainly distributed in the

*frad=Prad/Ptotal
Medium frad* (40%-65%): radiation mainly concentrated

divertor region (Fig.1-3)

near the X point, and the MARFE phenomenon (Fig.4)
Higher frad* (>65%) : Most of the radiation loss in the
core region (Fig.5-6)
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Z.S.Yang
Impurity injection system and relevant diagnostics on EAST
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Diagnostics distrib tion for N
impurity injection experiments

Divertor probe: j., T.. ., ¢ Pt ©N the divertor target

4 Toroidal:
PortC, O, H

' Poleoidal:
UO,UlLLUD,LO,LLLD,IM

InfraRed camera: Tg,. ¢;on the divertor target

Divertor tungsten spectrum: C, Ne, Ar, W in diverter region

Extreme UltraViolet spectrometer, EUV: C, Ne, Ar, W in midplane
Absolute eXtreme UltraViolet bolometer arrays, AXUV: radiation distribution

+— OM-GP

Microwave reflectometer: n,in midplane

Thomsen Scattering, TS: Te in the core and boundary : LO.'-.GP2

X-ray crystal spectroscopy, XCS: Ti in the core . - . . . .
POIN"T,W . : Gas puffing valves distribution in poloidal
: ne in the core . . . .
(left) and toroidal (riaht) directions on EAST




Requests from IAEA-2

Which database services does the community use, need and want?

Is the interaction of impurity species and/or their derivatives with reactor component surfaces in
scope, such as formation and sticking of NHx; vapour formation and interaction with plasma species;
etc?

How much experimental data is available, in what form, and can it (how can it) be stored and
curated for future use or analysis?

EAST ; on going
LHD ; until FY2022 campaign (it is not clear after FY2023 due to the budget. But Stored data is the
data repository



