

Vapour Shielding CRP

Kalle Heinola fusion-data@iaea.org

Vapour Shielding CRP

"Atomic Data for Vapour Shielding in Fusion Devices"

Duration: 2019 – 2022

CRP: Vapour Shielding

https://amdis.iaea.org/CRP/vapour-shielding

Background

- Plasma transient events and disruptions may induce rapid evaporation or ablation of the PFC surface layers. This may result in a dense expanding plasma cloud in front of the surface.
- In the formed plasma cloud, or vapour, the incoming energy from the hydrogen plasma can be converted into radiation, thereby shielding the PFC surface from further PWIs.

Objectives

 Provide an authoritative and evaluated set of data relevant to vapour shielding with particular emphasis on *liquid metals*.

Data needs

- Data relevant to liquid metals including Li, Sn, LiSn mixture. Impact of impurities, such as O, N, and C.
- **CR properties** of relevant atoms, ions and molecules
- Effect of surface chemistry. Especially: effect of H/D/T co-deposition on sputtering and evaporation
 Vapour Shielding

CRP: Vapour Shielding

https://amdis.iaea.org/CRP/vapour-shielding

Participants

Mohamad AKEL	**	AECS (Syria)
Igor BRAY	* ••	Curtin Univ. (Australia)
Roberto CELIBERTO		Univ. Bari (Italy)
Ronnie HOEKSTRA		Univ. Groningen (Netherland)
Ratko JANEV (†)		MASA (Macedonia) <i>in memo</i>
Predrag KRSTIĆ		PPPL (USA)
Narendra SINGH		Univ. Delhi (India)
Francisco TABARÉS	2	CIEMAT (Spain)
Ling LIU G	<u>.</u>	IAPCM (China)

	Methodologies(exper., comput., both)Plasma-focus device exposure of Sn targets; A+M data								
I.	CCC applied to $p + H$, $e + Li$ and $p + Li$								
	QM ro-vibrational properties $e + Li_2$ and $e + LiH$								
erland)	Structure and interactions of Sn ^{q+} ; q<20								
memoriam	TC-AOCC on p + Li ⁺ and p + Sn ⁺								
	Classical MD of Li surfaces with O & C impurities								
	Atomic data for Sn ³⁻⁴⁺ and W ¹¹⁺ , W ¹³⁺								
	LM (Li, Sn, LiSn) targets at TJ-11 (OLMAT project)								
	AOCC and MOCC on p + Be, Ne ^{1,2+} , Ar ^{1,2+}								

Vapour Shielding & Hydrogen Permeation CRP report 16 May 2022

4

CRP: Vapour Shielding

https://amdis.iaea.org/CRP/vapour-shielding

Research Coordination Meetings

1st RCM from 13 – 15 March 2019 (IAEA HQ)
2nd RCM from 7 – 9 October 2020 (online event)
3rd RCM from 19 – 21 October 2022 (IAEA HQ)

Data provided for A+M Unit databases

Heavy particle collisional processes:

Electron-molecule collisional:

https://db-amdis.org/collisiondb new database $p + Be^{1,3+}, p + Li, Be^{3+} + Li$ and H + Ne⁽⁶⁻¹⁰⁾⁺ (AOCC, MOCC) p + H (CCC) $e + LiH, e + Li_2$ Vapour Shielding & Hydrogen Permeation CRP report 16 May 2022

Thank you!

Hydrogen Permeation CRP

Kalle Heinola fusion-data@iaea.org

Hydrogen Permeation CRP

"Hydrogen Permeation in Fusion-Relevant Materials"

Duration: 2020 – 2025

https://amdis.iaea.org/CRP/hydrogen-permeation

Background

Hydrogen permeation in fusion reactor materials plays a crucial role since the radioactive **T behaviour in** materials determines the *in-vessel source term*, and the *ex-vessel release term* used in the *reactor safety assessments* for licensing future fusion facilities.

Objectives

To <u>enhance the knowledge base</u> and <u>reduce uncertainties</u> in data concerning the migration of hydrogen in materials (ITER, DEMO and FPPs)

Data needs

- divertor and main chamber: W, RAFM joining materials: Cu and its alloys (CuCr1Zr0.1)
- parameters affecting hydrogen permeation, trapping,
 retention, release, scrutinized both experimentally and computationally (*ab initio*, multi-scale simulations).
- effect of *n*-induced damage and defect evolution
- effect of surface chemistry, surface evolution√(PSI)

https://amdis.iaea.org/CRP/hydrogen-permeation

Participants

22 participants, 15 Member States

Experimental

- 16 proposals
 - Permeation: gas-driven, ion-driven, plasmadriven
 - ✓ TDS, NRA, PAS, plasma devices, SEM, EDX, XPS, GDOES
 - ✓ Materials: Be, W, Cu, CrZr, RAFMs
 - ✓ Bulk material, thin films, ITER W mono-block

Modelling/computational

- ~all proposals
 - ✓ DFT, MD, Rate Theories (TMAP, TESSIM, Vapour Shiel
 Vapour Shiel

Tommy AHLGREN	÷	Department of Physics, University of Helsinki, Finland
Sk. Musharaf ALI	6	Bhabha Atomic Research Centre, India
Pablo BRUZZONI		National Atomic Energy Commission, Argentina
Long CHENG	2	Beihang University, China
Sergei DANILCHENKO		Institute of Applied Physics, The National Academy of Sciences, Ukraine
Yves FERRO		Physique des Interactions Ioniques et Moléculaires (PIIM), Aix-Marseille Université (AMU), France
Anna GOLUBEVA		Kurchatov Institute, Russia
Anne HOUBEN		Forschungszentrum Jülich (FZJ), Germany
Wolfgang JACOB		Max Planck Institute for Plasma Physics, Garching, Germany
Mikhail Yu. LAVRENTIEV		Culham Centre for Fusion Energy, United Kingdom
Floriane LEBLOND		Centre d'Etudes Nucleaires de Cadarache, Association EURATOM-CEA, France
Byeongchan LEE	:	Kyung Hee University, South Korea
Sabina MARKELJ		Jožef Stefan Institute, Slovenia
Olga OGORODNIKOVA		National Research Nuclear University MEPhI, Russia
OYA Yasuhisa	٠	Shizuoka University, Japan
Daniel PRIMETZHOFER		Uppsala University, Sweden
Li QIAO		Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, China
Masashi SHIMADA		Idaho National Laboratory, United States of America
Dmitry TERENTYEV		SCK•CEN, Belgium
Brian WIRTH		Department of Nuclear Engineering, University of Tennessee, United State of America
Anže ZALOŽNIK		Center for Energy Research, UCSD, United States of America
Haishan ZHOU	12	Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), China

https://amdis.iaea.org/CRP/hydrogen-permeation

Research Coordination Meetings & other meetings

1st RCM from 23 – 25 November 2020 (online event)

> 51 participants, 15 Member States

 Technical Meeting on "Nuclear Fusion Fuel Permeation in Reactor First Wall Components", planned for 4 – 6 October 2021 (IAEA HQ/hybrid event)

> CRP PIs added with external experts (52 participants, 15 Member States)

2nd RCM from 28 – 30 November 2022 (IAEA HQ)

CRP subtasks ongoing

- > Round-robin with **GDP** (Anne Houben, FZJ)
- Permeation and defect evolution analysis of Neutron-irradiated samples (IAEA)

planned >> Round-robin for TDS (IAEA) and Rate Theory codes (*tbc*)

https://amdis.iaea.org/CRP/hydrogen-permeation

Subtask: Round-robin activity GDP for fusion materials (GDPFM)

- Samples EUROFER97 (batch 2) from same source.
 - ✓ IPP Garching: raw material
 - ✓ FZ Jülich: sample preparation polish, anneal, pre-characterization, sample distribution, coordination of the activity
- Participants: CEA (France), FZ Jülich (Germany), "Kurchatov Institute" (Russia), ASIPP (China), CNEA (Argentina), IPP Garching (Germany)

Floriane Leblond (CEA)	diameter 20 mm	T: 150°C - 400°C (>500°C) p: 10 mbar - 1000 mbar		Pablo Bruzzoni (CNEA)	diameter 30-35 mm
Anne Houben (FZ Jülich)	diameter 24-25 mm	T: 300°C - 550°C (750°C) p: 25 mbar - 800 mbar		Rodrigo	diameter 20-21 mm
Anna V. Golubeva (NRC)	diameter 30-35 mm	T: 200°C-400°C (750°C) p: 1-800 mbar (1500 mbar)	Arredondo (IPP)		
Hao-Dong Liu (ASIPP)	diameter 20 mm	T: 327°C - 627°C p: 10 mbar - 1000 mbar			

> Parameters: 30 – 550 °C, 10 – 1000 mbar, E97 samples with identical thickness

T: 30°C - 90°C

p: 1000 mbar

D/m2/s

T: RT - 727°C (750°C)

p: < 10 mbar (gas)lon: E: 50 eV - keV Ion: Flux: 1e18 - 1e19

https://amdis.iaea.org/CRP/hydrogen-permeation

- Subtask: Hydrogen in Neutron-irradiated Materials (HNIM)
 - Participants: Idaho National Lab (USA), MEPhI (Russia), UKAEA (UK), Univ. Helsinki (Finland). Coordination: IAEA
 - Permeation studies, round-robin experiment and studies of evolution of n-irradiation-induced defects: GDP, PDP, TDS, PAS, NRA
 - Two batches of samples:
 - 1. N-irradiation campaign 2017 2019 (samples provided by SCK-CEN)
 - ✓ various W grades: 0.072 0.124 dpa (up to 1 dpa), 600 1200 °C
 - ✓ IGP W for round-robin: 0.072 0.098 dpa, 600 1200 °C
 - 2. N-irradiation campaign 2022
 - ✓ 85 samples

- ✓ various W grades, CuCrZr, Mo, Fe, steels: 0.001 0.2 dpa and 50 1200 °C
- ✓ Eurofer97 (batch 3) donation: collaboration with F4E

https://amdis.iaea.org/CRP/hydrogen-permeation

Subtask: Hydrogen in Neutron-irradiated Materials (HNIM)

IAEA front page article

https://www.iaea.org/newscenter/news/neutrons-blast-fusion-materials-in-new-iaea-project

Neutrons Blast Fusion Materials in New IAEA Project

Michael Amdi Madsen, IAEA Office of Public Information and Communication

https://amdis.iaea.org/CRP/hydrogen-permeation

Subtask: Round-robin for TDS (TDS4F) Plan:

- Samples (W) from same batch. Three types of sample preparation:
 - 1. D plasma exposure, pre-irradiated W (IPP Garching)
 - 2. D high-energy implantation (FZJ)
 - 3. thermal exposure D₂ gas, pre-irradiated W (Univ. Helsinki)
 - D₂ exposure first trial successful
 - ✓ 0.1 dpa self-damaged W, D_2 gas exposure @ 250°C for 24 hrs
 - ✓ ERDA analysis: retention ~7×10¹⁵ at./cm²
 - > Sample mass production still needs to be confirmed (ongoing)
 - **Benefit**: only *known* pre-irradiated damage in the samples

Thank you!