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These two sessions

* Focus on electron scattering and theoretical/computational approaches
« What processes are possible for molecules

 Information required

* High energy approaches

* Quantum mechanical basics

* Low energy approaches

* R-matrix method

 Some examples




Molecules make everything more complicate
(and more interesting!)

m Additional degrees of freedom mean
more processes can take place vibrations

m Loss of symmetry means harder to A ka@ : y - § :
model v v3 ¥2

symmetnc stretch asymmetric stretch bend

A B oA

rotations

m | will focus mainly on electrons as
projectiles and calculations

m Which processes are possible depend
on the target and projectile and on
the scattering energy: let’s look at an
electron collision



Processes

And combinations of
these! E.g. vibronic
excitation, dissociative
jonization and more...

* Dissociative
recombination for an ion.
Photorecombination also
possible

Elastic scattering

AB+e — AB+e

Rotational excitation
AB(J”) +e — AB(J’) + @
Vibrational excitation
AB(v’=0)+e — AB(v’') +e
Dissociative attachment *
AB + e —— A +B

Electronic excitation

AB+e — AB*+e
Impact dissociation
AB+e — A+B+e

lonization
AB + e —— AB*+e+e

lon pair formation

AB+e — A +B" +e

Energy



What do the processes entail?

Elastic scattering
AB+e — AB+e

Simplest possible process
Qutcome: change in direction of projectile
Occurs for any projectile kinetic energy

- - O

Excitation
AB(J”,v’,i)+te — AB(,\V’,j) te

QOutcome: change internal state of the target

molecule, and kinetic energy and direction of
projectile

Different processes have different thresholds



What do the processes entail?

lonization
AB+e — AB*+e+e

Qutcome: target losses one electron, so now 2
electrons in the continuum; kinetic energy and
direction of projectile change

Thresholded

Impact dissociation
AB+e — A+B+e

Outcome: two or more molecular fragments
with Kinetic energy and direction; kinetic
energy and direction of projectile change
Thresholded



Example: electron scattering from CO

CO + e —77




Example: electron scattering from CO

CO + e —77

CO+e —CO+ e Elastic Scattering
CO(") + e~ — CO(J') + e~ Rotational Excitation
CO(v"=0) + e~ — CO(V') + e~ Vibrational Excitation
CO+e —C+ 0~ Dissociative attachment
CO + e= — CO* e~ Electronic Excitation
CO+e " -C+ 0+ e™ Impact dissociation
CO+e - COT +e + e lonisation

CO+e =-CH4+0 + e lon pair formation




What if the projectile is an ion?

CH + H, — 77

C** + Hy — C* + Hy Many of the processes
CH + Hy — C*t + Ho* induced by electron
CH + Hy — C* + HJ + e scattering also take place

CH + Hy — C* + HJ* + e
CH +Hy, —>C** +H+H+ e
CH 4+ Hp —» C3* + HY

CH + Hy — CF + HJ* - Charge transfer!!!
C** 4+ Hy — Ct +H+H
and more




How do we quantify the process?

m Probabilities are normally quantified as cross sections.

m Cross section can be seen as an effective area, normal to the direction of
Incidence, provided by a target to an incoming projectile. A constant of
proportionality between incident and scattered particles. It has units of area.

m Absolute measurements not easy or impossible: radicals, excited targets, etc..
Experiments sometimes provide yields or relative values

m Validation of complete sets through electron swarm data through Boltzmann
analysis

m Cross section for each processes that can take place
m \We need to specify one or several below:
- final internal state of the target, including charge

- Kkinetic energy of projectile and ejected particle(s)
- direction of projectile and products (ions, neutrals, additional free electrons)




Integral cross sections

For example, the integral cross section for electronic excitation is the constant of
proportionality between the number of incident particles per unit time and area and the
number of excited targets produced per unit time.

onl

Beer-Lambert Law: [ = e

lo: number of incident particles per unit area (L to beam) per unit
time

[(/): number of particles lost from the beam

n: number of target particles per unit volume o

Emergent Beam

| length of the interaction path —
o: integral cross sections oy

Intensity |

7




Differential cross sections (DCS)

Particle flux scattered, by each target, into solid angle
dS2sin = 0dfd ¢ divided by the incoming intensity

Z

1(6,0) do Sl rde
£,0, A .
lo X dQ( ¢) 6’ do1 rsind dé
< : . y
U(E)z/ 99 r 6. $)dO v
Q dQ ? ? |

do/d QQ = differential cross section

units of area / steradians




DCS example: H,0, elastic scattering, 4 eV
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Differential Cross Section (Azsr’1)

Scattering Angle (deg)

Faure et al., JPB 37 (2004) 1




How to model electron-molecule scattering?

Different energy regimes have different requirements

RT. V.I. E.T. |.T.
——— | E

Low Intermediate High

« High energies: collisions are effectively impulsive. Simplified calculations
are accurate: e.g. use of perturbative methods, neglect of some

Interactions...
- Low energies: detailed description of the internal state of the target and

full guantum mechanical treatment usually required. Approximations

usually used.
* Intermediated energies: quantum mechanical methods are too costly to

apply. Higher energy approaches sometimes work.



Complete sets are a community effort
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MTCS: momentum transfer
cross section. The average
momentum transferred by
the projectile when it collides

TCS: total cross section
lon: Ionization cross section

dissociation: all dissociation
processes

attach: electron attachment

A, C, E: excitation into
specific electron states

Anzai et al. Eur. Phys. J. D (2012) 66:36 10.1140/epjd/e2011-20630-1



High-energy electron scattering

m Simplified approaches that lead to analytical expressions
m These depend on:
m adjustable parameters or

m calculated or measured quantities: binding energies,
oscillator strengths

m Usually tailored to a specific process (electron excitation,
lonization, dissociative ionization....)

m Some (e.g. IAM-SCAR, independent atom model with screening
corrected additivity rule, Garcia and coll) can model many
processes

m We will use diatomic molecules as an example




High-energy: electronic excitation

Many based on high-energy Born cross sections. Valid when interaction is
very week (V Is very small and one can assume plane wave)

Generalized oscillator strength

/ for a given bondlength
J2 Kﬂzlﬂx "
oBOM(E) = 2me” f GIX; R d In(K?)

aok” J Kz AFE

transferred

N 2mE =
Initial momentum = P momentum

ki — k|

2m dR .
: — . ; SUK)1 1\ |12 : : :
G(K: R) = 55 AE(R) [ 4;:“"%:‘” )P forgiveniand]




High-energy: electronic excitation

BEf scaling
m Improves lower energy behaviour

m Based on Born plane wave theory; introduces a scaling factor that depends on the binding
energy of the electron B and the excitation energy AE

m Vibrationally resolved possible

E
oge(E) = o BOM(E
el B) =T age B
E e’ h/"t(rfm:{‘!f‘”r‘tg"'}2 G(K: R)

" E+ B+ AE agk J k2, =ki-kf?  AE

d In(K?)

simplified expression with adjustable G(x) Z
(l _|_ l—)ﬂ.’r’

G(K; R) is hard to calculated so employ a 1 o0 foxm
_ m-
parameters f_. (I +x)° =




High-energy: electronic excitation

Dipole-Born approximation

m Expressing generalized oscillator strength as a power series in K and retaining only first
order (dipole) leads to simplified expression:

S | < 0D, (R)|o; > |2 In kf + k; Converges to the right experimental
AN i

Born —
o PO (E) = . :
Sciﬂzkf |kf, — ki behaviour at very high E

e x D;; (R) = M;; (R) electronic transition dipole
v Indicate vibrational wavefunctions

Can be further simplified, so that behaviour as a function of E is improved for example:

47 | < | D, (R)[v; > I In AE

— | : ionization potential
3&0 k.,- &EZ

JBorn(E) —




High-energy: ionization
m Several approaches, many originating in the Thomson classical
Cross section

E/B -1
(E/B)?

22
GO E) = ;g,-(E_) = ;awn%w;. (%) f(EIB) with f(EIB) =

m Gryzinski method
m Universal function method
m Deutsch-Mark (DM) formalism

m Binary encounter approaches that combine high and lower energy
earlier methods




High-energy: ionization

Binary-encounter-Bethe (BEB) model
m https://physics.nist.gov/PhysRefData/lonization/intro.html
m Expression for singly differential cross sections also available

. § 0 Inr 1 B 1 Inz
G-EEE_I—|—I:H—|—”;'H|: > (l I3)+[2 Qj(l : :+1ﬂ

B= orbital binding energy U= orbital kinetic energy
T= scattering electron’s kinetic energy

t="T/B u=U/B

n=1 for neutral molecules, 2 if singly charged molecular ions

S =4ma,? N (Ryd/B)? N= occupation number

Q can be approximated to 1 or calculated from the oscillator strength


https://physics.nist.gov/PhysRefData/Ionization/intro.html
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(1996); and Y.-K. Kim and M.E. Rudd, Comments At. Mol. Mol.
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100, 26421 (1995).
S. P. Khare and W. J. Meath, J. Phys. B 20, 2101 (1987), and ]_b] 12.61 61.91 201
references therein (theory).
H. C. Straub, B. G. Lindsay, K. A. Smith, and R. F. Stebbings, B: Binding Energy
J. Chem. Phys. 108, 109 (1998). U: Average Kinetic Energy
N: Electron Occupation Number
(): Dipole Constant



https://dx.doi.org/10.18434/T4KK5C

More BEB ionization cross sections

m Cross sections have a similar shape with a maximum around 100-200 eV
m Different lines correspond to different calculated input parameters
m Agreement with experiment is very good

e~ on NH3

[
10




Quantum mechanical treatment

Let’s look at a simple system:

> two particles with masses my and ma so = L72

» particles interacting through a potential V/(r) where r is the
distance between the particles. This is a central or
spherically symmetric potential.

» no external forces are acting on the system.

incident particle along z

Cylindrical symmetry: no dependence on ¢ of cross sections




Quantum mechanical treatment

Scattering processes can be studied using the time-independent
Schrodinger equation
ﬁ2
(——\7’2 + V(r)) W(r) = EV(r)

24

S

Fal

H

W(r) is the wavefunction that describe the system (internal motion)
E is the energy of this motion (K.E. of C.M. excluded)

Example: H

In this case reduced mass pu ~ me

1 e . o 1
— or, In atomic units V(ir)=—-
deg r r

V(r) = —




Example: H (e + H™ collision)

» If E <0 ;V,m(r) with associated discrete eigenvalues:

1

E———
2n?

correspond to the 1s, 2s, 2p, 3p...states of H. Also:

/ |\I!,,;m(r)|2dV =1 assuming W, is normalized
allspace

» If E > 0: Wgyy(r) are associated to a continuum spectrum for
E and correspond to e~ + H™. Also:

/ W g (1) [2dV diverges
allspace



Quantum mechanical treatment

The asymptotic boundary condition for a scattering process :

e ikr

r—00 _jkz
V(r) — e +£(0) .
—

incident particles scattered particles
plane wave spherical waves

with k = Y2£E

f(@) is the scattering amplitude that contains all the information
about the collision. It can be shown:

do B 5



Angular behaviour :

——

The Schrodinger equation is separable in spherical coordinates: \’s"”é"-d[\ rdo
; gy d81- " rsing d¢
0 2 0 I © 0 1 0 7 i
v2 — 2 _— — J 1 9_ | “ S .y
4 (8r2 T rBr) i [sin@@@ (sm (90) 7 sin298¢2] o lds
L2 N ;

The eigenfunctions of L? are spherical harmonics:

L2Yim(0, @) = I(I + 1) Yim(0, ¢)

Yim(0, ¢) = N/mP,lmI(cos 0)e'™? | and m angular and magnetic

momentum quantum numbers

Any function that depends on # and ¢ can be expressed as a liner

combination of Yj,,.



Radial equation

V(r) = R(r) Yim(0, 0)

For the radial part of the wave function:

dr? T r dr

d’R,  2dR I(1+1)  2u
( r2 + ?12 V(r) R,t = ER;

Setting U(r) = %%V(r) and Ry(r) = i(r)

r

a5, (11 +1) )
er—( r2 +U(r)—k)5,r:0

S;(r) must satisfy the boundary condition so R;(r) is well behaved:

Si(r)=0 at r=20



Partial wave expansion

We know the form of the solutions:

v(r) =3 y,0,0)

/=0

In our case W(r) does not depend on ¢ so:

V(r) = i d Si(r) P(cosf)
I=0

r

Pi(cos 0): Legendre polynomials of degree /

d;: coefficients to be determined (using boundary condition)
S,(r) solution to radial Schrodinger equation.

It is known as the /t" partial wave. Partial wave expansion used
for non-spherically symmetric problems too.




Quantum mechanical treatment

In our case, asymptotically:

Si(r)

"R Ri(r) == ¢ Li(kr) + bimy(kr)]

Ji(kr): spherical Bessel function of order /

ny(kr): spherical Neumann function of order /

It can be shown that one can therefore write
roo 1 . 1

Ri(r) — ;sm(kr— —§I7r+"r),)

/th

7y is the phase shift of the /*" partial wave. Matching:

Zd,sl(r) Pi(cosf) —3 OOZ% ' r—ll7r+771)P,(cos€))
1=0



Quantum mechanical treatment

¥(r)
1.0:

Phase shift

—05Ff

—1.0F

We can derive an expression for f(6) in terms of the 7,

1 -
fF(0) = p 2(21 + 1)e"" sin(n;) Py(cos #)
1=0




Quantum mechanical treatment

do B P

AT _
o(E) = k_z 2(21 +1)sin’ 7,
[=0

» Partial wave expansion converges more rapidly at low energies:
just a few [ required. Centrifugal barrier increases with /:
more energy needed to overcome it.

» Converges when

A
V(r)oc; with p > 2 as r— 00

> At very low energies, s-wave scattering

» Partial wave expansion can be impractical at higher energies
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